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I am honored to participate in this Dragan Popović Memorial Conference. Dragan was my
colleague and friend. We published several papers together.
As far as I remember, for a while Dragan gave lectures in QFT. Recently I investigated new
approach to classical field theory. Today I will talk about this approach.
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Special theory of relativity

Quantum field theory is one of most important theories in physucs. It combines the
quantum theory, the field concept and the principle of special relativity.
Since we will be working here with classical free theory we will pay attention to Special
theory of relativity

Special theory of relativity is a theory in four dimensional Minkowski space-time with three
space directions x⃗ = {x , y , z} and one time direction t.

Lline element in Minkowski space-time is

dx2 = dt2 − dx⃗2 = dt2 − dx2 − dy2 − dz2 (1)

It is a slightly modified Pythagorean theorem, up to sign. Lline element is not always
positive. The zero value of lline element define light cone.

Symmetries of Minkowski space-time
Poincare transformations are all four dimensional rotations (space rotations and boosts) and
translations which preserve lline element. Generators of these transformations, translations
Pa and rotations Mab, form a Poincare algebra.
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Quantum field theory

In traditional approach quantum field theory starts with with well known equations
Klein-Gordn s = 0,
Dirac s = 1

2
,

Maxwell s = 1,
Rarita-Schwinger s = 3

2
,

Einstein s = 2, ...
equations s > 2

Is it possible to unify all these equations with arbitrary spin? The answer is YES.

How many equations do we need to describe all the equations of free field theory?
- Physicists would say it depends on the number of particle properties associated with
space-time symmetry.
- Mathematicians would say that it depends on the symmetry group, which means on the
number of Casinmir operators
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Number of Principle field equations for Poincare group

Ansver for Poincare group

For massive particles in both cases the answer is TWO. There are two particle properties
mass m and spin s and there are two Poincare Casinmir operators. In fact mass and spin are
eigenvalues of Poincare Casinmir operators.

For massless particles in both cases the answer is ONE. There is one particle property
helicity λ and there is one Poincare Casinmir operator.

Covariant description of helicity needs three independent equations. One is enough to
describe helicity. What is the role of the other two equations? They are the source of local
gauge invariance, well known for massless fields.

Lorentz transformations are source of local gauge transformations for massless fields
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Method

In order to describe field theory we will prefer Weinberg approach who uses Wigner’s
definition of particles as irreducible representations of Poincare group .

Unlike Weinberg approach which starts with particles and get to the field equations later we
will start with principle field equations for arbitrary spin and show that all known equations
for free fields follow from our principal equations.

We offer general prescription which can be used to construct field theory based on symmetry
of some given group. It means that all theories with same symmetry grpup will look the
same at sufficiently low energy.

Here we will apply this prescription to the Poincare group.
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Poincare algebra

Lie algebra of Poincare group has a form

[Pa,Pb] = 0 , [Pc ,Mab] = −i
(
ηbcPa − ηacPb

)
, (2)

[Mab,Mcd ] = i
(
ηadMbc + ηbcMad − ηacMbd − ηbdMac

)
, (3)

Pa are translation generators and

Mab = Lab + Sab are four dimensional rotations generators
They consist of orbital part Lab = xaPb − xbPa and spin part Sab.
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Poincare Casimir operators

Casimir operators are expressions which commute with all group generators and allow us to
label the irreducible representations

For P2 > 0 there are two Casimir operators which eigenvalues are mass m and spin s

P2 = m2 , W 2 = −m2s(s + 1) . (4)

Pauli-Lubanski vector

Wa =
1

2
εabcdM

bcPd . (5)
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Principle field equations

We will introduce field ΨA(x) where A contains the set of vector and spinor indices. In
order to separate states which describe definite particles we should impose some constraints
on the field ΨA(x)

Since in field theory particles are defined by mass and spin it is natural to use just operators
whose eigenvalues are mass and spin

We will postulate principle field equations for arbitrary spin as representation of relations (4)

(P2)ABΨ
B(x) = mΨA(x) , SA

BΨ
B(x) = s(s + 1)ΨA(x) . (6)

These equations are Poincare covariant because Casimir operators commute with all
Poincare generators

In particular, Casimir operators commute mutually. Since commuting observables have a
complete set of common eigenfunctions we are able to impose both Casimir operators to the
same field ΨA(x).
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Representation of Casimir operators

To find representation of Casimir operators we need representation of Poincare algebra
generators, momentum Pa and spin Sab

Representation of momentum Pa is well known from quantum mechanics (Pa)AB → iδAB∂a
and it is spins independent.

Spin generators (Sab)
A
B act as derivatives

(Sab)
AB

CD = (Sab)
A
C δ

B
D + δAC (Sab)

B
D (7)

The initial expression for Dirac spinor and vector fields are

(Sab)
α
β =

i

4
[γa, γb]

α
β , (Sab)

c
d = i

(
δcaηbd − δcbηad

)
(8)

and we can find representations for all other fields using recurrence relation
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Standard momentum

The next step is to find projectors on irreducible representations
In order to to achieve that it is useful to go to standard momentum.

For massive case where p2 = m2 we can chose rest frame momentum ka = (m, 0, 0, 0) as
standard momentum.
With this choice the Klein-Gordon equation is solved.

Later we can express any momentum pa as Lorentz transformation of ka

pa = Lab(p)k
b . (9)
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Principle field equations for standard momentum

For standard momentum differential equation become algebraic ones. After solving algebraic
equation we can go back to pa dependent solutions and then to solution in coordinate
representation.

The spin equation for standard momentum takes a form

SA
BΨ

B(k) = s(s + 1)ΨA(k) , (10)

where

SA
B = (S2

i )
A
B , (Si )

A
B =

1

2
εijk (Sjk )

A
B . (11)

Note that instead of 6 components of spin operator Sab in the frame of standard momentum
we have left with 3 components Si , which are generators of space rotations. They form a
subgroup known as little group for massive Poinacare case.
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Projection operators and equation of motion

To have nontrivial solution for function ΨA the characteristic polynomial must vanish

det
(
SA

B − λδAB

)
= 0 , λ ≡ s(s + 1) . (12)

The values si , corresponding to the eigenvalues λi , are spins of irreducible representations.

The representations of eigenfunctions ΨA
i with definite spin have a form

ΨA
i = (Pi )

A
BΨ

B , (Pi )
A
B =

[∏n
j ̸=i

(
S − λj

)]A
B∏n

j ̸=i

(
λi − λj

) , i = {1, 2, · · · , n} , (13)

where (Pi )
A
B are corresponding projection operators
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Scalar field

We are going to confirm above massive principle field equations for particular spins:
- Klein-Gordon equation for scalar fields (s = 0)

- Dirac equation for spinors (s = 1
2
)

- equation for massive vector fields (s0 = 0 and s1 = 1).

- Rarita-Schwinger equation (s0 = 1
2
and s1 = 3

2
)

A scalar field has no indices ΨA(x) → φ(x), so that (Sab)
A
B → 0. Equation (12) produces

λ = 0 and consequently s = 0. We are left with the Klein-Gordon equation(
∂2 +m2

)
φ(x) = 0 . (14)

B. Sazdović From symmetry group to free field equations



Introduction
Principle field equations in massive case

Examples in massive case
Massless case

Examples in massless case

Dirac field
For Dirac field ΨA(x) → ψα(x) and representation of spin operator is

(Sab)
A
B → (Sab)

α
β =

i

4
[γa, γb]

α
β ,

Si =
1

2
εijkSjk =

i

4
εijkγjγk , Sα

β = [(Si )
2]αβ =

3

4
δαβ . (15)

Then the spin equation takes the form

Sα
βψ

β(k) = λψα(k) , λ ≡ s(s + 1) (16)

and since Sα
β is diagonal we obtain

det(S − λ)αβ =
(
λ−

3

4

)4
= 0 . (17)

Therefore, λ = 3
4
which produces spin s = 1

2
There is only one trivial projection operator

Pα
β = δαβ . We obtain Klein-Gordon equation for all components (∂2 +m2)ψα(x) = 0.

We can linearize it in the form of Dirac equation

(iγa∂a +m)ψα(x) = 0 , (18)

where γa are constant matrices. In fact, Dirac equation produces Klein-Gordon equation if

{γa, γb} = 2ηab . (19)
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Vector field 1
For vector field we have ΨA → V a, and from representation of spin operators we obtain

(Si )
a
b =

1

2
εijk (Sjk )

a
b = i εijkδ

a
j ηkb , Sa

b = (S2
i )

a
b = −2δjkδ

a
j ηkb . (20)

Therefore, the spin equation in the rest frame takes the form

Sa
bV

b(k) = λV a(k) . λ ≡ s(s + 1) (21)

The consistency condition produces

det(S − λ)ab = −λ(2− λ)3 = 0 , (22)

with solutions for eigenvalues λ0 = 0 , λ1 = 2 and for spins s0 = 0 , s1 = 1.
We obtain two projectors

(P0)
a
b(k) = δab −

Sa
b

2
= δa0δ

0
b , (P1)

a
b(k) =

Sa
b

2
= δab − δa0δ

0
b . (23)

To find irreducible representations in arbitrary frame we should boost corresponding
equation of the rest frame. Then for projection operators we obtain standard form of
longitudinal and transversal projection operators

(PL)ab(p) =
papb

p2
, (PT )ab(p) = δab −

papb

p2
. (24)
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Vector field 2
Therefore, solution of the spin equation produces two irreducible representations in
coordinate space

s = 0 : V a
L (x) =

∂a∂b

∂2
V b(x) , s = 1 : V a

T (x) = V a(x)− V a
L (x) . (25)

Equations of motion for massive vector fields, for spins 0 and 1 have a form(
∂2 +m2

)
V a
L (x) = 0 ,

(
∂2 +m2

)
V a
T (x) = 0 . (26)

If we introduce notation φ = ∂bV
b so that

V L
a =

∂a

∂2
φ , VT

a = Ua , (27)

we can rewrite above equations as(
∂2 +m2

)
φ(x) = 0 ,

(
∂2 +m2

)
Ua(x) = 0 , (28)

where Ua satisfy condition ∂aUa = 0. This condition reduces four components of the field
Ua to three degrees of freedom. It provides positivity of vector field energy.
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Massive Rarita-Schwinger field 1 (Spin operator)
For Rarita-Schwinger fields we have A,B → (aα), (bβ) and ΨA → ψaα where a, b are vector
and α, β spinor indices, so that spin equation takes the form

Saα
bβψ

bβ = λψaα , Saα
bβ = (S2

i )
aα

bβ , λ = s(s + 1) . (29)

Spin operator for Rarita- Schwinger field is

(Sab)
cα

dβ = (sab)
c
dδ

α
β + δcd (fab)

α
β , (30)

can be express in terms of spin operators for Dirac fields (fab)
α
β and spin operators for

vector fields (sab)
c
d . Then we have

(Si )
cα

dβ = (si )
c
dδ

α
β + δcd (fi )

α
β , (31)

where for vector and Dirac fields

(si )
c
d = i εijkδ

c
j ηkd , (fi )

α
β =

i

4
εijk (γjγk )

α
β . (32)

Consequently, after some calculation we obtain Rarita-Schwinger spin operator

Saα
bβ = 3

(1

4
δab − δai ηib

)
δαβ − δai ηjb(γiγj )

α
β . (33)
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Massive Rarita-Schwinger field 2 (Projectors)
We can rewrite Rarita-Schwinger spin operator in the form

Saα
bβ =

3

4
(π0)

a
bδ

α
β +

15

4
(π1)

a
bδ

α
β − 3(π)aαbβ , (34)

where projectors of vector case (π0)ab and (π1)ab has been defined in (23) and

(π)aαbβ =
1

3
δai ηjb(γiγj )

α
β . (35)

With the help of expression δab = (π0)ab + (π1)ab we obtain

Saα
bβ − λδabδ

α
β =

(3

4
− λ

)
(P0)

aα
bβ +

(15

4
− λ

)
(P1)

aα
bβ , (36)

where we introduced expressions

(P0)
aα

bβ = (π0δ + π)aαbβ , (P1)
aα

bβ = (π1δ − π)aαbβ . (37)

It is easy to check that P0 and P1 are projectors

P2
0 = P0 , P2

1 = P1 , P0P1 = 0 , P0 + P1 = 1 . (38)
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Massive Rarita-Schwinger field 3 (Spins)

The consistency condition produces

det(S − λ)aαbβ =
(3

4
− λ

)d0
(15

4
− λ

)d1
detP0 detP1 = 0 , (39)

The solutions for eigenvalues are λ0 = 3
4
, λ1 = 15

4
and for spins s0 = 1

2
, s1 = 3

2
.

Finally, Rarita-Schwinger projectors in arbitrary frame are

(P0)
aα

bβ(p) = (π0)
a
bδ

α
β +

1

3
(π1)

a
c (π1)b

d (γcγd )
α
β ,

(P1)
aα

bβ(p) = (π1)
a
bδ

α
β −

1

3
(π1)

a
c (π1)b

d (γcγd )
α
β . (40)
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Massive Rarita-Schwinger field 4 (Spin-32 )

Spin- 3
2
Rarita-Schwinger equations in arbitrary frame consists of Dirac equation for the

vector-spinor field plus supplementary condition.
They can be combined into one equation as linear combination of Dirac equation and
supplementary conditions[

(i ∂̂ −m)P1 + Aπ0 + Bπ + Cπ∗0 + Dπ0∗
]a

bψ
bα(x) = 0 . (41)

This equation contain singularities ∂−2. So, we are going to chose coefficients A,B,C and
D in such a way that this equation becomes regular.
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Massive Rarita-Schwinger field 5 (original
Rarita-Schwinger equation )

Finaly we obtain exactly equation from Nieuwenhuizen article[
i ∂̂(P1 − 2π)−m

(
P1 − 2π −

√
3
(
π∗0 + π0∗

))]a
bψ

b = 0 . (42)

We can rewrite it in the form

εabcdγ5γb∂cψd (x) +
m

2
[γa, γb]ψ

b(x) = 0 . (43)

This is original Rarita-Schwinger equation which can be obtained from the Lagrangian

L = −
1

2
ψ̄a

(
εabcdγ5γb∂c − imσad

)
ψd , σab =

i

2
[γa, γb] . (44)
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Casimir operators and standard momentum for massless
Poincare group

In massless case, square of momentum vanishes P2 = 0. The Casimir operators for massless
Poincare group, is helicity λ. The covariant definition of helicity is

Wa = λPa , Wa =
1

2
εabcdS

bcPd , (45)

where Wa is Pauli-Lubanski vector and Sab is spin parts of Lorentz generators. Since
PaWa = 0 we can conclude from (45) that P2 = 0, as it should be for massless case.

It is possible to use non covariant definition of helicity λ = Sini as projection of space part
of spin generator Si =

1
2
εijkSjk to momentum axis ni =

pi
|pi |2

. It produces the same

spectrum for λ but in that case we are losing the crucial possibility to insist on Lorentz
invariance which will product gauge transformations.

In massless case, when Lorentz invariant function of momentum vanish, p2 = 0, we can
chose standard momentum as ka = (1, 0, 0,−1).
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Principle field equations for massless fields

We can postulate principle field equations for massless fields ΨA(x) with helicity λ

(Wa)
A
BΨ

B(x) = λ(Pa)
A
BΨ

B(x) . (46)

We claim that this equations contains all massless free field equations with arbitrary helicity,
known in classical field theory.

Principle field equations for standard momentum are

(S12)
A
BΨ

B(k) = λΨA(k) ,

(Π1)
A
BΨ

B(k) = 0 , (Π2)
A
BΨ

B(k) = 0 . (47)

where

W0 = S12 = W3 ,

W1 ≡ Π2 = S02 − S32 , −W2 ≡ Π1 = S01 − S31 . (48)

All three generators annihilate standard momentum. So group element W a
b, leaves ka

invariant W a
bk

b = ka, which is definition of little group in massless Poincare case.
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Spectrum of helicities

We are going to solve eigenproblem of operator (S12)AB which will produces spectrum of
helicities λi (i = 1, 2, · · · , n). In order that first equation (47) has nontrivial solutions its
characteristic polynomial must vanish

det
(
(S12)

A
B − λσδAB

)
= 0 . (49)

The zeros of characteristic polynomial are eigenvalues λi .

Next we can construct projection operators (Pi )
A
B corresponding to helicities λi

(Pi )
A
B =

[∏n
j ̸=i

(
S12 − λjδ

)]A
B∏n

j ̸=i

(
λi − λj

) , (50)

and obtain corresponding eigenfunctions

ΨA
i (k) = (Pi )

A
BΨ

B(k) . (51)
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Lorentz transformations induce gauge transformations

We solved first equation (47) and it produces complete set of eigenvalues and
eigenfunctions. But we have additional two conditions. It is of great importance to
investigate the compatibility of all equations (47).

In equations for standard momentum (47) operators Π1 and Π2 should annihilate field
ΨA(k). But explicit calculation shows that this does not happen in some physically relevant
cases. Since equations (47) are condition for Lorentz invariance, violation of these
conditions breaks Lorentz invariance. To measure this violation we introduce expression

δΨA
i (ε1, ε2)(k) = i

(
ε1Π1 + ε2Π2

)A

BΨ
B
i (k) , (52)

where ε1 and ε2 are some parameters.

Fields which violate Lorentz invariance are gauge dependent fields and we will simply call
them gauge fields. They are not representation of Poincare group.
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Vector field and Maxwell equations

The case of massless vector field is most important. Besides representing electromagnetic
interaction we will see that solutions for massless tensor fields of arbitrary rank comes down
to the case of vector field.

For vector field we have A,B → a, b, ΨA → V a and

(Sab)
A
B →

(
Sab

)c

d = i
(
δca ηbd − δcb ηad

)
, ⇒ (S12)

a
b = i

(
δa1η2b − δa2η1b

)
. (53)

The consistency condition requires that characteristic polynomial vanishes. It means

det
(
S12 − λσ

)a

b = λ2(λ− 1)(λ+ 1) = 0 , (54)

with solutions for helicities

λ0 = 0 , λ1 = 1 , λ−1 = −1 . (55)
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Basic vectors
We introduce basic vectors

ka = δa0 − σδa3 , qa = δa0 + σδa3 , p̆a± = δa1 ± iσδa2 . (56)

Projection operators in terms of basic vectors take the form

(P0+)
a
b(k) =

1

2
qakb , (P0−)ab(k) =

1

2
kaqb , (P±1)

a
b(k) = −

1

2
p̆a±(p̆∓)b . (57)

The eigenfunctions of operator (S12)ab are

V a
i (k) = (Pi )

a
bV

b . (58)

It is easy to check that for eai = {ka, qa, p̆a+, p̆
a
−}

(S12)
a
be

b
i = λie

a
i , (59)

Consequently, basic vector eai carries helicity λi . In particular, basic vectors p̆a± carry
helicities ±1 and both basic vectors ka and qa carry helicities 0. If n± are numbers of
vectors p̆a± then its helicity is

λ = n+ + n− . (60)
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Gauge transformations of massless vector fields

Gauge transformations of vector components are

δV a
i (ε1, ε2)(k) = i

(
ε1Π1 + ε2Π2

)a

bV
b
i (k) , (61)

Gauge transformations of basic vectors have simple form

δka = 0 , δqa = ε+p̆
a
− + ε−p̆a+ , δp̆a± = ε±ka . (ε± = ε1 ± iσε2) (62)

Only component V a
0−(k) is gauge invariant, δV b

0−(k) = 0, and consequently only this part is
irreducible representation of Poincae group

The other components V a
0+(k) and V b

±1(k) are not gauge invariant and they transform as

δV a
0+(k) = ω+p̆

a
− + ω−p̆a+ , ω±(k) =

1

2
kaV

aε± ,

δV a
±1(k) = kaΩ± , Ω±(k) = −

1

2
(p̆∓)bV

bε± . (63)
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Action for massless vector field with helicities λ = ±1
produces Maxwell equations

The electromagnetic interaction is symmetric under space inversion. Therefore, instead of
two components V a

+1(k) and V a
−1(k) we will introduce one vector field Aa(k)

Aa(k) = αV a
+1(k) + βV a

−1(k) . (64)

We also introduce one parameter Ω(k) = αΩ+(k) + βΩ−(k) instead of two components
Ω+(k) and Ω−(k) related by space inversion.

Gauge transformation in coordinate representation is

δAa(x) = ∂aΩ(x) . (65)

Action should depend only on the gauge invariant combination of vector fields, in fact of
field strength Fab = ∂aAb − ∂bAa. Since it must be scalar we can take

I0 = −
1

4

∫
d4xFabF

ab . (66)
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Interaction with other fields

Interaction with other fields can be described by the action

Iint

(
Aa

)
=

∫
d4xAaJa . (67)

Requirement for gauge invariace Iint

(
Aa + δAa

)
= Iint

(
Aa

)
after partial integration

produces
∫
d4xΩ ∂aJa = 0. For arbitrary Ω we obtain conservation condition on current

∂aJa = 0 . (68)

The complete action is

I = I0 + Iint =

∫
d4x

(
−

1

4
FabF

ab + AaJa
)
. (69)

Variation with respect to Aa produces Maxwell equations.
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Examples in massless case

Second rank tensor

In the case of second rank tensor we have A → (ab) and ΨA → T ab.

Representation of spin operator for second ranktensor takes a form

(S12)
ab

cd = ρacδ
b
d + δacρ

b
d =

(
ρδ + δρ

)ab

cd , (70)

(P0)
a
b = (π0)

a
b , (P±1)

a
b = (π±)ab . (S12)

a
b = ρab , (71)
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Examples in massless case

Projection operators

Using relations ρ = π+ − π− and δ = π0 + π+ + π− we obtain

S12 = P1 + 2P2 − P−1 − 2P−2 , δδ = P1 + P2 + P−1 + P−2 + P0 , (72)

where

P0 = π0π0 + π+π− + π−π+ , P±1 = π0π± + π±π0 , P±2 = π±π± . (73)

Using the fact that π0, π+ and π− are projectors we can conclude that (Pi )
ab

cd

(i = 0,±1,±2) are projectors also.
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Examples in massless case

Spectrum of second rank tensor
For second rank tensor characteristic matrix takes the form

S12 − λσδδ = −λσP0 + (1− λσ)P1 + (2− λσ)P2 − (1 + λσ)P−1 − (2 + λσ)P−2 . (74)

Since (Pi )
ab

cd are projectors, characteristic polynomial is already factored and we have

det
(
S12 − λσδδ

)
=

(
− λ

)6(
1− λ2

)4(
4− λ2

) 2∏
i=−2

detPi = 0 . (75)

Using the fact that detPi ̸= 0 we can find that spectrum of helicities is

λ0 = 0 , λ±1 = ±1 , λ±2 = ±2 . (76)

Consequently, the eigenfunctions of operator S12 in full notation have the form

T ab
i (k) = (Pi )

ab
cdT

cd (k) , (i = 0,±1,±2) (77)

Second rank tensor with helicities λ = ±2 is of particular importance since its symmetric
part (metric) contribute to general relativity.
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Second rank tensor with helicities λ = ±2 and general
relativity in weak field approximation

Second rank tensor with highest helicities λ = ±2 is symmetric tensor

T ab
±2(k) = (P±2)

ab
cdT

cd (k) =
1

4
(p̆∓)c (p̆∓)dT

cd (k)p̆a±p̆b± , (78)

Since gravitation interaction is symmetric under space inversion it is common to treat both
components as a single particle called graviton. So, instead of two polarizations T ab

+2(k) and

T ab
−2(k), we will introduce one symmetric tensor

hab(k) = αT ab
+2(k) + βT ab

−2(k) . (79)

We also introduce one parameter Ωa(k) = αΩa
+(k) + βΩa

−(k) instead of two components

Ωa
+(k) and Ωa

−(k) related by space inversion.
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Action

Gauge transformation in coordinate representation has a form

δhab(x) = ∂aΩb(x) + ∂bΩa(x) . (80)

Equation of motion with respect to hab has two indices. We are going later to include
interaction and so we will take Einstein tensor for free field equation

G ab(x) = Rab −
1

2
ηabR = ∂c∂

bhac − ∂2hab − ∂a∂bh + ∂a∂ch
cb − ηab

(
∂c∂dh

cd − ∂2h
)
= 0 . (81)

Field equation (81) can be obtained from the action

I0(h
ab) =

∫
d4x

(1

2
∂chab∂

chab − ∂chab∂
bhac + ∂ch

ac∂ah −
1

2
∂ah∂

ah
)
. (82)
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Interaction with matter
Interaction with matter field ΦA we can describe with the action quadratic in hab

Iint(h
ab) =

∫
d4xL(hab,ΦA) . (83)

Note that the integration measure is the flat Minkowski measure d4x , as Lagrangian is
already quadratic in hab.

From requirement that Iint(h
ab) is gauge invariant Iint(h

ab + δhab) = Iint(h
ab) we have∫

d4xδhab
∂L
∂hab

=

∫
d4x

(
∂aΩb + ∂bΩa

)
Θab = 0 . Θab =

∂L
∂hab

(84)

Using partial integration and fact that Θab is symmetric tensor we obtain that Θab is
conserved energy-momentum tensor, ∂aΘab = 0.

The complete action is I (hab) = I0(hab) + Iint(h
ab). Its variation with respect to hab

produces complete Einstein equations in weak field approximation

Gab(h
ab) = Θab . (85)
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Second rank tensor with helicities λ = ±1 produces
Maxwell equations

Beside highes helicities λ = ±2, second rank tensor has also components with helicities
λ = ±1. These components describe Maxwell equations.

For symmetric tensor we obtain

(TS
±1(−))

(ab)(k) = TS
∓2

(
kap̆b± + kb p̆a±

)
= kaφb

±(k) + kbφa
±(k) , (86)

and for antisymmetric one

(TA
±1(−))

[ab](k) = TA
∓2

(
kap̆b± − kb p̆a±

)
= kaAb

±(k)− kbAa
±(k) , (87)

Here φa
± = TS

∓2p̆
a
± and Aa

± = TA
∓2p̆

a
± are new fields defined above. Note that both φa

± and
Aa
± are proportional to p̆a±, as well as fields V a

± in

The field φa(x) behaves like electromagnetic field. It is vector field, it has the same helicity,
the same gauge transformation and the same number of degrees of freedom.

Antisymmetric part is gauge invariant and it corresponds to field strength.
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Massless tensors with arbitrary rank
We are going to solve most general equation for integer helicity

(SA
B − λδAB)Ψ

B = 0 , (88)

where ΨA is tensor with rank n so that ΨA = T a1a2···an . The problem comes down to that
of vector fields.
Using ρ = π+ − π− and δ = π0 + π+ + π− we obtain

(S12)
A
B =

n∑
k=1

k
(
Pk − P−k

)A

B , (89)

and delta function for tensors with arbitrary rank

δAB = δn = (π0 + π+ + π−)n =
n∑

k=1

(
Pk + P−k

)
+ P0 . (90)

Here (Pk )
A
B is sum of all terms πi1πi2 · · ·πin such that

∑n
m=1 im = k where we count π+ as

π1 and π− as π−1. Note that as all expressions Pk are projectors PkPq = δkqPk where
(k, q = 0,±1,±2, · · · ,±n). The multiplication factor k in (89) is consequence of
combinatorics.
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Spectrum for arbitrary rank tensors

Since (Pk )
A
B are projection operators S12 − λ is diagonalized and we have

(S12)
A
B − λδAB = −λ(P0)

A
B +

n∑
k=1

[
(k − λ)(Pk )

A
B − (k + λ)(P−k )

A
B

]
. (91)

Helicities for n rank tensor are

λ0 = 0 , λk = k , λ−k = −k , k = (1, 2, · · · , n) . (92)

The eigenfunctions, which are our candidates for irreducible representations, for massless
tensors with arbitrary rank are

ΨA
m = (Pm)

A
BΨ

B . (m = 0,±1,±2, · · · ,±n) (93)
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Fronsdal’s action for highest helicity

Gauge transformation

δhA(k) =
n∑

i=1

∂aiΩAi
(k) . (94)

Fronsdal’s action for highest helicity

Sn(h) =
1

2

∫
d4x

[
− ∂ahA∂ahA + n∂ah

aAi ∂bhbAi
+ n(n − 1)∂a∂bh

abAij hc cAij

+
n(n − 1)

2
∂chb

bAij ∂ch
a
aAij

+
n(n − 1)(n − 2)

4
∂chb

bcAijk ∂bhaabAijk

]
. (95)

For n = 1 we obtain Maxwell action and
for n = 2 Einstein action in weak field approximation.
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