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Motivation

• Free energy of the black hole carries an important information about its
thermodynamic stability.

• Thermal phase transitions arise due to fluctuations of the temperature of
black hole, when a new phase has smaller free energy. For example, BH can
develop hair below some Tc .

• Using the AdS/CFT correspondence, a dual theory can describe a phase
transition in condensed matter physics, such as holographic superconductors
[e.g., Hartnoll, Herzog Horowitz 2008]

• An equilibrium state of a thermodynamic system corresponds to a minimum
of the internal energy in the energy representation of states, or a maximum of
the entropy in the entropy representation of states.
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Motivation

• The extremal black hole has the horizons that coincide and, as a
consequence, its temperature is T = 0

• Entropy of extremal black hole arises due to a degenerate quantum ground
state; it is a suitable quantity for studying its equilibria.

• Quantum phase transition arises due to quantum fluctuations, which
produce instabilities of the system around a critical point. This phenomenon
is known in the physics of condensed matter (spin glasses).

• Magnetized black hole close to extremality can exhibit the Meissner effect
typical for phase transitions [Astorino 2015].

• Previous examples show that extremal black holes can have phase transitions,
too.

• Macroscopic entropy of the extremal black hole can be calculated using the
entropy function formalism [Sen 2005].
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Motivation

• Isometries of a near-horizon geometry of an extremal BH in 4D:
- spherically symmetric (AdS2 ⊗ S2 geometry)→ SO(2, 1)⊗ SO(3);
- rotating (AdS2 ⊗ S1 geometry)→ SO(2, 1)⊗ U(1);
- topological (AdS2 ⊗ S2, AdS2 ⊗H2, AdS2 ⊗R2 geometries)

→ SO(2, 1)⊗ SO(3),SO(2, 1)⊗ SO(2, 1), SO(2, 1)⊗R2;

• Can be generalized to other extremal geometries, such as warped ones
[Astefanesei, Miskovic, Olea 2012].

• The accelerating Kerr-Newman geometry can be included, too, by allowing
warping and twisting of the above geometies
[Astorino 2015, 2016].

• The black hole horizon always has AdS2 geometry.
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Motivation

• Our interest —gravity with the cosmological constant
- Horizon geometry of an extremal BH is AdS2 ⊗ Σk

- 2D transversal section Σk can be a


2-sphere (S2) k = 1
2D plane (R2) k = 0
2-hyperboloid (H2) k = −1

• Entropy function formalism deals with near-horizon parameters only, seeing
the action as a function of the charges, scalar fields and the parameters of
the near-horizon geometry.

• It is based on a variational principle applied to a generic class of actions.
• Extremization of the entropy function determines all the near-horizon
parameters without knowledge of a particular solution.
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Motivation

• Some results about the horizon instabilities:

- A massless scalar field produces an instability at the horizon of an extreme RN
BH (because the energy density degenerates on the horizon when studying
the dispersion of the wave equation on the BH spacetime) [Aretakis 2013]

- The axisymmetric extremal horizons are unstable under linear scalar
perturbations [Aretakis 2015], [Lucietti, Murata, Reall 2013]

- Also Kerr horizons are unstable in presence of a scalar [Zimmerman 2016 ]

• Non-extremal BH: Stückelberg scalar has been known to describe both first
and second order thermal phase transitions. A question is whether a similar
change would also occur at T = 0. [Hartnoll, Herzog Horowitz 2008],
[Franco, García-García, Rodríguez-Gómez 2009

• We study phase transitions of a 4D extremal charged black hole in General
Relativity, when it is coupled to a Stückelberg scalar field.
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Entropy function formalism

SUMMARY OF THE FORMALISM

• Near-horizon geometry of the extremal black hole in 4D with Λ
has topology AdS2 ⊗ Σk

ds2 = gµν(x) dxµdxν = v1
(
−r2 dt2 + dr 2

r 2

)
+ v2 dΩ2

(k )

r = radial distance from the horizon
v1 = radius of 2D anti-de Sitter space AdS2
v2 = radius of the transversal section Σk with the metric γnm(y)

dΩ2
(k ) =


dθ2 + sin2 θ dϕ2 , ym = (θ, ϕ) , k = 1
dx2 + dy2 , ym = (x , y) , k = 0
dχ2 + sinh2 χ dϕ2 , ym = (χ, ϕ) , k = −1

Note: k = 0,−1 is possible only when Λ < 0
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Entropy function formalism

• Action for gravity coupled to the EM and scalar fields

I =
∫
d4x
√−g L(g ,A, φ)

• Extremal BH near the horizon

H : gµν → (v1 , v2) , Aµ → (e, p) , φ→ u

The scalar field, due to the attractor mechanism, depends only on it value on
the horizon, u.

The electromagnetic field on the horizon (based on isometries only) is
Frt = e, Fθϕ =

√
γ p
4π

• Action evaluated on the horizon

f (v , e, p, u) =
∫
H
d2y
√−g L(v , e, p, u)
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Entropy function formalism

• The function f (v , e, p, u) satisfies the action principle — it has an extremum
on the equations of motion, for given boundary conditions.

• Boundary conditions: Asymptotic electric charge q and magnetic charge p
are kept fixed.

Identification of asymptotic charges

• EM field equations and Bianchi identities lead to the first integrals∫
d2y δI

δFrt
= a = const,

∫
d2y Fθϕ = b = const.

• Evaluated on the horizon, these integrals become a = ∂f
∂e and b = p

• Evaluated at the asymptotic infinity, these are the integrals of electric and
magnetis fluxes, so that b = p =magnetic charge and a = q = electric
charge
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Entropy function formalism

• Entropy function: Legendre transformation of the function f with respect to
the electric field E (v , e, p, u) = 2π [eq − f (v , e, p, u)]

• Parameters near the horizon: calculated as an extremum of the entropy

function [Sen 2005]
∂E
∂vi

= 0 ,
∂E
∂u
= 0 ,

∂E
∂e
= 0 ,

∂E
∂p
= 0

e.g.,
∂E
∂e
= 0 is equal to q = ∂f

∂e

• Black hole entropy: extremum of the entropy function S = Eextr

• Therefore, finding the entropy function E (v , e, p, u) and its maximum, one
can calculate the entropy, electric field and AdS2 and Σk radii of the
extremal black hole, independently on a particular solution considered.
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Charged black hole coupled to a scalar field

THE ACTION

• General Relativity with Λ + Maxwell field + complex scalar field

I =
∫
d4x
√−g

[
1

16πG (R − 2Λ)− 1
4 F

2 + LS (φ̂)
]

• Complex scalar field φ̂ = φ eiσ

• Minimal coupling
LS (φ̂) = − 12

∣∣(∂− iA) φ̂
∣∣2 = − 12 [(∂φ)2 + φ2(∂σ− A)2

]
• Local U(1) symmetry: φ→ φ , σ→ σ+ α , Aµ → Aµ + ∂µα

• Non-minimal coupling with U(1) symmetry:
by the replacement φ2 → P(φ) ≥ 0
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Charged black hole coupled to a scalar field

• Stückelberg complex scalar

LS = − 12
[
(∂φ)2 +m2φ2 + P(φ)(∂σ− A)2

]
• Non-linear self-interaction choice

P(φ) = φ2 + a
4 φ4 ≥ 0

• When P(φ) = φ2, the above action describes minimally coupled scalar field.

• Non-minimal coupling is introduced by the coupling constant a 6= 0.
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Charged black hole coupled to a scalar field

• Equations of motion

Rµν − 1
2 gµν R + gµν Λ = 8πG Tµν

∇µF µν = P(φ) (∇µσ− Aµ)

(�−m2)φ = 1
2 P(φ) (∇σ− A)2

∇µ [P(φ) (∇µσ− Aµ)] = 0 (not independent)

• Near-horizon parameters

- Field equation for σ(x) is not independent due to the U(1) symmetry and it
can be gauge-fixed to σ = 0.

⇒ Extremal BH configurations are replaced by five parameters (v1, v2, e, p, u)
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Charged black hole coupled to a scalar field

• Lagrangian evaluated on the horizon

L = 1
8πG

(
k
v2
− 1
v1
−Λ

)
+ e2
2v 21
− p2

32π2v 22
− 1
2 m

2u2 + 1
2 P(u)

(
e2
v1
− p2zk (y )

16π2v2

)
• The function zk (y) depends on the horizon geometry and is given by
z1 = cot2 θ, z0 = x2 and z−1 = coth

2 χ.

• Transversal section volume element

Vol(Σk ) =
∫
d2y
√

γ

• Auxiliary function

f =
∫
d2y
√

γ v1v2 L

• Explicit dependence on ym in the function zk (y) makes f divergent, unless
the magnetic charge vanishes, p = 0.

• Magnetic field Fmn 6= 0 breaks a spherical symmetry of the black hole
solution in presence of the Stückelberg scalar.
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Charged black hole coupled to a scalar field

• Charge density Q = q/Vol(Σk )

• Entropy function

E = 2πVol(Σk )
[
eQ − kv1−v2−Λv1v2

8πG − e2v2
2v1

+ v1v2
2

(
m2u2 − e2

v1
P
)]

• Equations of motion (extremum of E )

0 = ∂E
∂v1

⇒ k −Λv2 = v2
(
e2
v 21
+m2u2

)
0 = ∂E

∂v2
⇒ 1+Λv1 = e2

v1
− v1 m2u2 + e2P

0 = ∂E
∂e ⇒ Q = v2e

(
1
v1
+ P

)
0 = ∂E

∂u ⇒ 0 = 2v1 m2u − e2P ′(u)

• Convention 4πG = 1; Choice e,Q > 0 (no loss of generality)
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Critical behavior

NORMAL PHASE
Reissner-Nordström (flat, dS,AdS) black hole

u = 0 it is always a particular solution of the scalar equation

• General solution for fixed Q
k 6= 0 (black holes with spherical and hyperbolic horizons)

v (k )1 (Q) = 2Q 2

1−4ΛQ 2+k
√
1−4ΛQ 2

,

v (k )2 (Q) = 2Q 2k
1+k
√
1−4ΛQ 2

e(k )(Q) = Q 1+k
√
1−4ΛQ 2

1−4ΛQ 2+k
√
1−4ΛQ 2

k = 0 (planar black holes or black branes)

v (0)1 (Q) = − 1
2Λ ,

v (0)2 (Q) = Q√
−Λ

e(0)(Q) = 1
2
√
−Λ
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Critical behavior

• Existence of the solution

Λ < 0 There are 2 solutions with k = ±1

0 < Λ < 1
4Q 2 There is 1 solution with k = +1

Λ = 0 Can be reproduced from the limit Λ→ 0 of the branch ‘+’

Λ = 1
4Q 2 There is no finite solution for v1

• Extremum of the entropy function

Sk (Q) = Vol(Σk )
2πQ 2√

∆+k

S0(Q) = Vol(Σk )
πQ√
−Λ

, Λ < 0

• When Λ = 0, one gets the known result S = q2/4 for the extremal
Reissner-Nördstrom black hole.
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Critical behavior

HAIRY PHASE
Hairy Reissner-Nordström (flat, dS,AdS) black hole

• Solution with the scalar hair exists only if a 6= 0 (nonlinear interaction), for
the scalar masses m 6= 0, 1, 12 and the cosmological constant Λ 6= 0

• Three solutions for the scalar field u = 0 , u = ±
√
2
a

(
v1 m2
e2 − 1

)
• When u 6= 0, the equations are invariant under the replacement u → −u, so
we can chose u > 0.

⇒ this is known as the basins of attraction
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Basins of attraction

• There is a coexistence of different well-defined solutions to the attractor
equations stabilising the scalar field at the black hole horizon

• This suggests possible phase transitions by selecting different basins of
attraction in the near-horizon dynamics of the scalar field

• Chosing P(u) to be a polynomial of higher order, or even non polynomial,
might lead to even larger basins of attraction — increase the number and
complicate the structure

• Very little is known about basins of attraction in the literature, all of that in
the SUGRA context, most of them associated to non-homogenous scalar
manifolds, and none of the examples have Λ 6= 0
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Critical behavior

Critical point

• Coexistence curve - when two solutions u = 0 and u ≥ 0 co-exist, there can
happen a phase transition from one configuration to another

• Critical point is obtained from the limit u → 0 of the hairy phase

v1c = m2−1
Λ , Qc = k

2m2−1

√
m2(m2−1)

Λ

v2c =
k(m2−1)
Λ(2m2−1) , ec =

√
m2(m2−1)

Λ

• The following inequalities must be fulfilled:

m2 > 0, k
(
2m2 − 1

)
> 0, m2−1

Λ > 0

• Critical parameters are continuous for k = ±1
v (k )i (Qc ) = vic , e(k )(Qc ) = ec

• Critical entropy is continuous for k = ±1 Sc = Sk (Qc )
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Critical behavior

• Planar horizons give consistent eqs only for the particular scalar mass
m = 1

2 , while the charge Q remains arbitrary.

• The critical value Qc does not exist.

• Variations in the external parameter Q would not be able to induce an
instability of the system and trigger a phase transition.

• We will not consider the black holes without Qc .
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Critical behavior

Classification of critical behavior

Standard classifications used in thermal field theories

• Ehrenfest classification is based on the Gibbs free energy G and it classifies
transitions according to the order of the lowest derivative of G (T ) that
shows a discontinuity upon crossing the coexistence curve. If there are
divergences in discontinuities, Ehrenfest classification is not valid.

• When T → 0, it is more suitable to look at the classification based on the
entropy S(T ).

• Discontinued phase transitions are the ones where S has a jump at the
critical point. This is not our case.

• Continued phase transitions have S continuous. There exists the critical
point where the response functions (i.e., heat capacity, compressibility,
susceptibility, . . . ) possess discontinuities.

• In our case, we have to look at the entropy as a function of charge, S(Q),
and the response functions are its derivatives.
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Critical behavior

Near-critical behaviour of the entropy

• We focus on Λ 6= 0 with the spherical and hyperbolic horizons, k 6= 0,
and we know that S(Q) is a continuous function of the charge at Qc

• Small parameter ε = Q −Qc , which can be positive or negative

• Critical exponents β, δ, α,γ use the power-law to describe how the
parameters tend to the critical values:

u2 = A εβ + · · ·
e = ec + B εδ + · · ·
v1 = v1c + V εα + · · ·
v2 = v2c + C εγ + · · ·

• Solving the equations of motion in the leading order near Qc gives rise to the
universal critical exponents for any k 6= 0 α = β = γ = δ = 1

• This means that the scalar field behaves at the critical black hole horizon as
u =

√
A(Q −Qc ) + · · ·

• The sign of A detrmines for which Q (above or below Qc ) the parameter u is
real
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Critical behavior

Solution of the fields equations when Q = Qc + ε

• Behavior of the fields on the horizon

u =
√
A ε+

√
Ã ε

3
+ · · ·

v1 = v1c + B ε+ B̃ ε2 + · · ·

v2 = v2c + C ε+ C̃ ε2 + · · ·

e = ec +D ε+ D̃ ε2 + · · ·
• Coeffi cients (unique)

A = −
√
m2−1
Λm2

4kΛ2(2m2−1)2
Λa−4(m2−1)3

B = kΛa (2m2−1)3
Λa−4(m2−1)3

C =
√
m2(m2−1)

Λ
2Λa+4(m2−1)2
Λa−4(m2−1)3

D =
√
m2(m2−1)

Λ
2kΛa (2m2−1)2
Λa−4(m2−1)3

...

• The sign of k
[
Λa− 4(m2 − 1)3

]
determines the existence of the hairy

solution
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Critical behavior

• Two different solutions that extremize the entropy:

- u = 0 for any Q

- u =
√
A (Q −Qc ) + · · · when sgn(A) (Q −Qc ) ≥ 0

• Calculation of the entropy near the critical point

- When sgn(A) (Q −Qc ) > 0, non-linear equations can be solved
approximatively in ε.

- When sgn(A) (Q −Qc ) < 0, then u = 0 and thus Sk (Q) is known exactly.
This result can be compared to the previous one using the Teylor expansion
in ε for Q = Qc + ε.

• Entropy

S |u 6=0 = Sc + 2π2Vol(Σk )ec ε+ kπVol(Σk )(2m2 − 1)3 ω ε2 +O(ε3)
S |u=0 = Sc + Sc + 2π2Vol(Σk )ec ε+ kπVol(Σk )(2m2 − 1)3 ε2 +O(ε3)

where ω = Λa
Λa−4(m2−1)3

• The solution u = 0, that always exists, will change to the solution with u 6= 0
only if it has higher entropy, i.e., ω > 1
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Critical behavior

• Second Law of Thermodynamics
∆S = S |u 6=0 − S |u=0 > 0

It gives that a phase transition will happen if the hairy phase has larger
entropy, that is, ω > 1

• Shown behavior is very similar to the one described by the Landau-Ginzburg
phase transition theory, only the free energy is replaced by the extremal
black entropy and the temperature is replaced by the electric charge..

• Discontinuity of the response function S ′′ typical for phase transitions:

S ′′<(Qc ) 6= S ′′>(Qc )
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Critical behavior

When this transition happens?

• An interval of allowed scalar masses, for given Λ and k :
(a) Λ > 0 k = 1 m2 > 1
(b) Λ < 0 k = 1 1

2 < m
2 < 1

(c) Λ < 0 k = −1 0 < m2 < 1
2

• Second Law of Thermodynamics of black holes:
Λ
[
Λa− 4(m2 − 1)3

]
> 0

• Existence of the hairy solution: sgn(A)(Q −Qc ) > 0[
Λa− 4(m2 − 1)3

]
(Q −Qc ) < 0

• The bounds determine the coupling a

a >
4|m2−1|3
|Λ| > 0

• Small or negative interactions do not favor the scalar hair.
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Critical behavior

How the story goes?

• (a,c) or Λk > 0: The RN (A)dS black hole exists for large charges. As the
charge decreases and passes through the critical point, for Q ≤ Qc , the hairy
solution appears, which has larger entropy.

• (b) or Λk > 0: The RN AdS black hole is favored for small charges. As the
charge increases, the hair grows when the charge crosses the critical point,
Q ≥ Qc , also increasing the entropy of the configuration.

In all cases, there are phase transitions for either sign of Λ and any geometry of
the horizon, provided the scalar coupling is strong enough.
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Critical behavior

EXAMPLES

• Let us choose m2 = 3
4 , a = 1

12 , Λ = − 3
`2
, ` = 1

• This choice fullfils P(u) = u2 + 1
12 u

4 > 0

• Critical values of the parameters are ec = 1
4 Qc = 1

2
v1c = 1

12 v2c = 1
6

• Near-critical solution for the scalar field,

u = 4
√
Q −Qc + 8

3

√
(Q−Qc )3

3 +O(ε5/2) exists only if Q ≥ Qc , and u = 0
exists for any Q

• Near-critical entropy

S(Q) =

{
2π2

3 + 2π2 (Q −Qc ) + 2π2

3 (Q −Qc )2 + · · · , Q ≥ Qc ,
2π2

3 + 2π2 (Q −Qc ) + π2

2 (Q −Qc )2 + · · · , Q ≤ Qc .

• It is clear that the extremal black hole, under given conditions, indeed
changes its phase at Qc
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Conclusions

• Extremal AdS4 black holes with spherical and hyperbolic horizons can
develop hair above/below some Qc , due to variations of electric charge

• The mass of the Stückelberg scalar has to be in a given interval and the
Stückelberg interaction non-linear and strong enough

• The phase transition does not occur when Λ = 0 or k = 0

• The scalar field plays the role of the order parameter

• Our calculations are done analytically using the entropy function
formalism

• The extreme hairy AdS4 solution should be studied in the whole spacetime

• More general study and understanding of the basins of attraction is needed

• What system describes a quantum phase transition in a dual theory via the
AdS/CFT (or AdS/CMT) correspondence?

• How to embed the system in SUGRA?

T H A N K Y O U !
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