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Accelerating Black Holes



Accelerating black holes in 3+1

To accelerate a black hole, we need to be able to push or pull it.  

Anything touching the event horizon must fall in unless traveling at the 
speed of light. 

This means that the physical object that touches the horizon must have 
energy = tension ( ) 

 Fortunately, there is a candidate           Cosmic String!

T0
0 ∼ T1

1



Cosmic string
• Very thin quasilinear object, which is fully 

characterised by its mass per unit length 
.  

                                                                    

• The string produces a conical defect 

                        

• No long range spacetime curvature.

μ

Tμ
ν ≃ δ(2)(r)diag(μ, μ,0,0)

δ = 8πGμ

The conical defect is what accelerates the black hole!



The C-metric
Let’s consider the Plebanski-Demianski metric with non-zero cosmological constant  

parametrised by two parameters 

                              

      ,  

      

The (conformal) boundary  

Useful form to see range of the variables that preserves Lorenzian signature 

Not so clear view of black hole structure 

Λ = −
3
ℓ2

ds2 =
1

A2(x − y)2 (−P(y)dt2 +
1

P(y)
dy2 +

1
Q(x)

dx2 + Q(x)dz2)
P(y) = ( 1

A2ℓ2
− 1) + y2 − 2mAy3

Q(x) = 1 − x2 − 2mAx3

x = y

Griffiths and Podolsky 2006’



Introduce radial and angular variables ,  ,   and rescaling the time 

, we get 

,      ,    

The conformal factor blows up at  

The horizon(s) structure is determined by an interplay between ,  and   
     - If  is big enough, there is an accelerating horizon (+ the black hole horizon) 
     - If , we have a single black horizon ( )         

 determines the conical singularity 

y =
−1
Ar

x = cos θ z =
ϕ
K

t → tA

f(r) = (1 −
2m
r )(1 − A2r2) +

r2

ℓ2
g(θ) = 1 + 2mA cos θ Ω(r, θ) = 1 + Ar cos θ

r =
−1

A cos θ

m A ℓ
A
A2ℓ2 < 1 rh ∼ 2m

K δ = 2π (1 −
1
K ) = 8πμ

ds2 =
1
Ω [−f(r)dt2 +

1
f(r)

dr2 + r2 ( dθ2

g(θ)
+ g(θ)sin2 θ

dϕ2

K2 )]
Hong and Teo 2003’

Aryal, Ford, Vilenkin 1986’
Achucarro, Gregory, Kuijken 1995’



More precisely, to produce the acceleration, we need an imbalance 
between the north and south pole of the black hole 

We can regularise one of the axis, viz.  

How can we see the effect of the acceleration in the system? 

δN = 0 ⇒ K = 1 + 2mA

μ± = 2π (1 −
g(0)
K ) = 2π (1 −

1 ± 2mA
K ) = 8πμ±

δS =
2πmA

K
⇒ μS =

mA
K



We can see the effect of  by considering :                                 ,                              

In the slowly accelerating limit  , we take introduce the following coordinates 

                               ,     

We get 

          

A m = 0

A2ℓ2 < 1

1 +
R2

ℓ2
=

1 + (1 − A2ℓ2) r2

ℓ2

(1 − A2ℓ2) Ω2
R sin Θ =

r sin θ
Ω

f(r) = 1 − A2r2 +
r2

ℓ2
g(θ) → 1

ds2 =
1
Ω

−(1 − A2r2 +
r2

ℓ2 ) dt2 +
1

(1 − A2r2 + r2

ℓ2 )
dr2 + r2 (dθ2 + sin2 θ

dϕ2

K2 )

ds2 = − (1 +
R2

ℓ2 ) βdt2 +
1

(1 + R2

ℓ2 )
dR2 + R2 (dΘ2 + sin2 Θ

dϕ2

K2 )
β = 1 − A2ℓ2



We have an off-centre global AdS perspective. As we increase , the point mass 
is “pulled” closer to the AdS boundary. 

A

Aℓ = 0.3 Aℓ = 0.9

A. Scoins, 2022

r = 0 ⇔ R =
A2ℓ4

1 − A2ℓ2



The slowly accelerating black hole in AdS 
is displaced from centre. It has a conical 
deficit running from the horizon to the 
boundary. The string tension provides the 
force that hold the black hole off-centre. 

The system is “accelerating” and yet, 
remains static suspended due to the string 
tension                      μs = mA/K ( ↔ F = MA)



Thermodynamics
The temperature can be obtained through the standard Euclidean method 

Entropy  

What about the mass?

T =
f′ (r+)
4πα

=
1

2πr2
+α [m(1 − A2r2

+) +
r3
+

ℓ2(1 − A2r2
+) ]

S =
πr2

+

K(1 − A2r2
+)



Holographic mass: Fefferman-Graham expansion in a bit ‘unusual’ way 

Where  and  are determined by requiringFm Gm

1
r

= − Aξ −
∞

∑
m=1

Fm(ξ)zm

cos θ = ξ +
∞

∑
m=1

Gm(ξ)zm

ds2 =
ℓ2

z2
dz2 +

ℓ2

z2 (g(0)ij + z2g(2) + ⋯) dxidxj



We choose  with , then 

The Balasubramanian-Kraus stress tensor ,  

So, the mass is

F1 = −
(1 − A2X)3/2

Aω(x)α
X = (1 − x2)(1 + 2mAx)

⟨Tij[g(0)]⟩ = lim
z→0

1
zD − 3

Tij[h]

ds2
(0) = − ω2dτ2 +

ω2α2ℓ2dx2

X(1 − A2ℓ2X)2
+

Xω2α2ℓ2dϕ2

K2(1 − A2ℓ2X)

⟨Tt
t⟩ = ρE =

m
8πℓ2α3ω3

(1 − A2ℓ2X)3/2(2 − 3A2ℓ2X)

M = ∫ dxdϕ −g(0)ρE =
αm
K

Anabalon, Appels, Gregory, Kubiznak, Mann, Ovgün 2018

α = 1 − A2ℓ2



Euclidean action 

No Hawking-Page phase transition. 

Extended thermodynamics 

IE =
β

2αK (m − 2mA2ℓ2 −
r3
+

ℓ2(1 − A2r2
+)2 ) = βF

Anabalon, Appels, Gregory, Kubiznak, Mann, Ovgün 2018

Gregory, Scoins 2019



C-metric in 2+1 dimensions
We start with an ansatz similar to Plebanski-Demianski metric. 

                        

We eliminate all the gauge freedom of the metric functions getting quadratic eqs for  and . 

We restrict the coordinates for ranges where Lorenzian signature holds.  

We get 3 classes of solutions depending on the range of x 

ds2 =
1

A2(x − y)2 (−P(y)dt2 +
1

P(y)
dy2 +

1
Q(x)

dx2)
P(y) Q(x)

Anber 2008
Astorino 2011

GAH, Gregory, Scoins 2022



Finally, we insert a (single) domain wall by cutting and gluing the spacetime 
at . Israel’s condition give the tension of the wall . 

This yields to 

x = const μ = ± A
4π

Q(x)

Class I
Accelerating particles: pulled by a wall or pushed by a strut

Type : An accelerating black hole pushed by a strutIC

Class II Accelerating BTZ: pulled by a wall or pushed by a strut

Class III No single wall solutions. 
 Braneworld-type of geometries allowed.



Using , , r =
−1
Ay

t = α
τ
A

x = cos ( ϕ
K )

Class I: Accelerating particles

ds2 =
1

[1 ± Ar cos (ϕ/K)]2 [−f(r)
dt2

α2
+

dr2

f(r)
+ r2 dϕ2

K2 ]
f(r) = 1 + (1 − A2ℓ2)

r2

ℓ2

Slow acceleration  No Horizon! Aℓ < 1

Rapid acceleration  Acc. Horizon Aℓ < 1
σ = ± A

4π
sin ( π

K )Tension



Particle mass? We follow the same FG prescription as for 3+1d. 

For rapid acc. phase, there is temperature associated to the Rindler horizon T =
A2ℓ2 − 1
2πℓα

M = −
1

8π
π
2

− arctan
cot ( π

K )
1 − A2ℓ2

S =
Area
4G

= − 4ℓarctanh [(−Aℓ + A2ℓ2 − 1) tan ( π
2K )]



Class I: Accelerating particles

Slowly accelerating conical defect  
Pulled by a wall A = 0.9ℓ

Slowly accelerating conical defect  
pushed by a strut A = 0.9ℓ

R0 =
Aℓ2

α



Embedding within global : The particle worldline is shown in solid black. Several surfaces of constant t are plotted. The 
event horizons are demonstrated by the surfaces at early and late t. The bifurcation surface is shown as a green line. The 

boundary of the classically accessible subset of the global boundary is shown in red. Lines of constant x are shown in blue, 
with lines of constant y in dashed orange. 


 


AdS3



Class II: Accelerating BTZ

ds2 =
1
Ω [−F(r)dt2 +

1
F(r)

dr2 + r2dψ2]
+ Pulled by a wall 
-   Pushed by a strutF(r) = − m2 (1 − A2r2) +

r2

ℓ2
, Ω(r, ψ) = 1 ∓ Ar cosh ψ

+ We need to identify  where , , x = ± cosh(ψ/K) ψ ∈ (−π, π) r = − (Ay)−1 t = αA−1τ

+ Where we also introduced the parameter , and m = 1/K A → mA



Standard BTZ BTZ pulled by a wall BTZ pushed by a strut



Class : A black hole pulled by a wallIC

ds2 =
1
Ω [−F(ρ)dt2 +

1
F(ρ)

dr2 + ρ2dϕ2]
F(ρ) = − m2 (A2ρ2 − 1) +

ρ2

ℓ2
, Ω(ρ, ϕ) = Ar cos mϕ − 1 ,

1
m

≤ Aℓ <
1

m sin (mπ)

+ When , there is a horizon Aℓ > 1 y2
h = 1 −

1
A2ℓ2

+ For the acc. Particle, we usually take , but we can also have , y < − yh y ∈ (yh, x) x ∈ (x+,1)

+ We identify , , x = ± cos(ϕ/K) ρ = (Ay)−1 t = αA−1τ



In global coordinates shows a 
clear parallel with BTZ. However, 
there is no continuous link to the 
BTZ metric. 



Holographic interpretation?

In 3+1 dimensions, the holographic stress tensor 

With ,     

Can be written in the fluid/gravity correspondence language

ρE =
m

8πℓ2α3ω3
(1 − A2ℓ2X)3/2(2 − 3A2ℓ2X) Π =

3mA2X
16πα3ω3

(1 − A2ℓ2X)3/2

On going work with Cisterna, Diaz,  Gregory

Anabalon, Appels, Gregory, Kubiznak, Mann, Ovgün 2018

Rangamani 2009
Hubeny, Marolf, Rangamani 2010



The fluid/gravity stress tensor   

With  

Here  ‘non-hydrodynamic correction’  and  

The quantities depends on the conformal representative !

⟨Tab⟩ = Δ(x)( 3
2

uaub +
1
2

g(0)ab) + Σab

Σab = ξΘab = ξ(Cabdud + Cbadud)

Δ(x) =
m (1 − A2ℓ2X)5

4πℓ2ω3α3
ξ =

ℓ2

8π 3
=

3
2

1
2π

k1/2N3/2

ω(x)

Cotton tensor Cabc = ∇[cRb]a −
1
4

ga[b ∇c]R

Mukhopadhyay, Petkou, Petropoulos, Pozzoli, Siampos 14’

Hubeny, Marolf, Rangamani 2010



In 2+1, we can play the same game but with a subtle difference 

We introduce  

Now the conf. boundary is located at  

We can cast the metric into the ADM form where  the spacetime coordinates are  
and induced coordinates on the hypersurfaces are  

z = x − y

z = 0

xμ = (z, τ, x)
xi = (t, x)

ds2 =
1

A2(x − y)2 (−P(y)dt2 +
1

P(y)
dy2 +

1
Q(x)

dx2)
ds2 =

1
A2z2 (−Pdt2 +

(dx2 + dz2 − 2dxdz)
P

+
dx2

Q )

ds2 = N2dz2 + hij(dxi + Nidz)(dxj + Njdz)



The holographic stress tensor  

 

Matches with GAH, Gregory, Scoins 22’ for a particular choice of  

Full boundary metric and stress tensor.  

Trace anomaly , with   

⟨Tij⟩ = lim
z→0

1
8πG (Kij − Khij −

1
ℓ

hij)
⟨Tτ

τ⟩ =
ℓA2ϵ
16πG (1 + ϵA2ℓ2(3x2 − 2)) , ⟨Tx

x⟩ = −
ℓA2ϵ
16πG (1 − ϵA2ℓ2x2)

ω(x)

⟨Ti
i⟩ =

c
24π

R[g(0)] c = 3ℓ/2G

N2 =
1

Ω2(P + Q)
, Ni = (0, −

Q
P + Q ) , hij = diag (−

P
Ω2

,
Q + P
Ω2PQ )

Brown, Henneaux 86



Fluid/gravity interpretation? Yes, of course.  

With  

We can again use the same trick as in 3+1,  

Here ,   

Same type of behaviour. ‘Non-hydrodynamic’ corrections due to acceleration. 

What does it mean from a real hydrodynamic perspective? 

ρ = −
A2ℓ(ϵ + A2ℓ2(3x2 − 2))

16πG
, Π =

A2ℓ(−ϵ + A2ℓ2(5x2 − 2))
32πG

.

⟨Tij⟩ = Δ(ξ)(2uiuj + g(0)ij) + Σij

Δ =
A2ℓ(ϵ − A2x2ℓ2)

16πG
Σij =

1 + ϵA2ℓ2(x2 − 1)
16πGA4ℓ

R[g(0)]δτ
i δτ

j



Euclidean action?  

On-shell                  

IE = M +
1

8πGℓ2z2
h ϵ

arctanh( x

x2 − 1 ) +
2A ϵ(x2 − 1)

δ

−TS New divergent contribution due to the wall

I =
1

16πG ∫
ℳ

d3x −g (R − 2Λ) +
1

8πG ∫
∂ℳ

d2x −hK −
1
ℓ ∫

∂ℳ

d2x −h



Concluding remarks
We have constructed a broad family of solutions in 2+1 dimensions resembling 
the four-dimensional C-metric, showing that the set of possible geometries is 
much richer than previously acknowledged in the literature. 

 Class  has no analogous object in higher-dimensions. Deeper understanding is 
needed. 

 Holographic implications still unclear.  

 Hydrodynamic expansion  

 Proper renormalisation?  

SUGRA construction 

IC

Ferrero, Gauntlett, Perez Ipiña,Martelli, Sparks x2 2020
GAH, Donos [In progress]



Thanks!

Questions?


