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Infrared structure of gauge theories

IR region of theories with massless particles in asymptotically flat spaces
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Infrared structure of gauge theories

Motivation

• Hamiltonian treatment of asymptotic symmetries
[Bondi, van der Burg, Metzner 1962; Sachs 1962]

- BMS symmetry — infinite-dimensional asymptotic symmetry at the null
boundary of 4D asymptotically flat spacetimes

• Celestial holography
- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on
the celestial sphere

• Asymptotic symmetries in Electromagnetic and Yang-Mills theories

• 2D realization of soft symmetries in electromagnetism

[He, Mitra, Porfyriadis, Strominger 2014; Nande, Pate, Strominger 2018]

• Extension to Yang-Mills [Strominger 2014; He, Mitra, Strominger, 2016]
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Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (ω → 0)

⇔ Enhancement of symmetries at the boundary of flat spacetime (r → ∞)

• Goldstone modes, do not leave the vacuum invariant: eS [η] |ψ〉 = |ψ+ η〉

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 5 / 30



Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (ω → 0)

⇔ Enhancement of symmetries at the boundary of flat spacetime (r → ∞)

• Goldstone modes, do not leave the vacuum invariant: eS [η] |ψ〉 = |ψ+ η〉

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 5 / 30



Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (ω → 0)

⇔ Enhancement of symmetries at the boundary of flat spacetime (r → ∞)

• Goldstone modes, do not leave the vacuum invariant: eS [η] |ψ〉 = |ψ+ η〉

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 5 / 30



Infrared structure of gauge theories

Penrose diagram of the Minkowski space
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Hamiltonian analysis of electromagnetism in the null
foliation

Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates (t, r , yA)

M4 : ds2 = −dt2 + dr2 + r2dΩ2

S2 : dΩ2 = γAB (y)dyAdyB

• Time coordinate u = t εr , 1 ≤ ε ≤ 1
ε = 1 retarded time
ε = 0 proper time of a massive particle
ε = 1 advanced time

• Coordinates on S2: stereographic projection (θ, ϕ)→ yA = (z , z̄)

z = eiϕ cot θ
2 , z̄ = e−iϕ cot θ

2
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Hamiltonian analysis of electromagnetism in the null
foliation

• Minkowski metric gµν in the coordinates xµ = (u, r , yA):

ds2 = −du2 − 2ε dudr +
(
1− ε2

)
dr2 + r2dΩ2

• S2 metric in complex coordinates

γAB =

(
0 γz z̄

γz z̄ 0

)
, γz z̄ =

2
(1+z z̄ )2 =

√
γ
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Hamiltonian analysis of electromagnetism in the null
foliation

• Electromagnetic action in the background gµν

I [A] = − 1
4e2
∫

d4x
√
gF µνFµν (Fµν = ∂µAν − ∂νAµ)

• Canonical momenta πµ = − 1
e2
√
gF uµ

In components: πu = 0

πr = r 2
e2
√

γ Fur

πA = 1
e2
√

γγAB
[
(ε2 1)FuB εFrB

]
• The limit ε2 → 1 is discontinuous

• The action in the light-cone (ε2 = 1) has an additional constraint

• Light-cone actions are first order in velocities [Steinhardt 1980]
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Hamiltonian analysis of electromagnetism in the null
foliation

Bondi reference frame: ε2 = 1

• Primary constraints πu ≈ 0 , χA ≡ επA − 1
e2
√

γγABFrB ≈ 0

• Canonical Hamiltonian HC = πµȦµ L

HC = e2(πr )2

2r 2
√

γ
+ e2 π̃AπA

2
√

γ +
√

γ

4e2r 2 F̃
ABFAB Au∂iπ

i

• Total Hamiltonian [Dirac 1964]

HT = HC + λuπu + λA χA

λu(x), λA(x) = Hamiltonian multipliers

• Canonical Poisson brackets Aµ(x),πν(x ′) u=u ′ = δν
µ δ(3)(x x ′)

• Evolution Φ̇(x) ≈ {Φ(x),HT } =
∫

d3x ′ {Φ(x),HT (x ′)}
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HC = e2(πr )2

2r 2
√

γ
+ e2 π̃AπA

2
√

γ +
√

γ

4e2r 2 F̃
ABFAB − Au∂iπ

i

• Total Hamiltonian [Dirac 1964]

HT = HC + λuπu + λA χA

λu(x), λA(x) = Hamiltonian multipliers

• Canonical Poisson brackets
{
Aµ(x),πν(x ′)

}
u=u ′ = δν

µ δ(3)(x − x ′)

• Evolution Φ̇(x) ≈ {Φ(x),HT } =
∫

d3x ′ {Φ(x),HT (x ′)}

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 10 / 30



Hamiltonian analysis of electromagnetism in the null
foliation

Bondi reference frame: ε2 = 1

• Primary constraints πu ≈ 0 , χA ≡ επA − 1
e2
√

γγABFrB ≈ 0

• Canonical Hamiltonian HC = πµȦµ −L
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Hamiltonian analysis of electromagnetism in the null
foliation

Comment

• We always have two different Hamiltonians ε = ±1.
• The future cone ε = +1 and the past cone ε = −1 are causally disconnected.
• Common boundary i0 is located at the spatial infinity.

• A radial wave located at (u, r) propagates along v = t + εr = const.

• In absence of massive particles, the future lightlike infinity
J + = J +(t r , y) and the past lightlike infinity J = J (t + r , y)
behave as Cauchy surfaces [Hawking, Perry, Strominger 2016].
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Hamiltonian analysis of electromagnetism in the null
foliation

Symplectic matrix{
χA(x),χB (x ′)

}
= ΩAB (x , x ′) ≡ − 2ε

e2
√

γγAB ∂r δ
(3)

• If ΩAB - invertible: χA are first class (generate symmetries)

• If ΩAB - not invertible: χA are second class (eliminate redundant fields)

One possibility

• ΩAB is invertible because γAB is invertible ⇒ χA are second class

• Reduced phase space χA = 0 [Goldberg 1991, Majumdar 2022]

Other possibility

• ΩAB is invertible, but its inverse is not unique

- ΩAB is infinite-dimensional matrix and it has zero modes∫
d3x ′ΩABV ′B =

2ε
e2
√

γγAB ∂rVB = 0 ⇒ VB = VB (y)
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Hamiltonian analysis of electromagnetism in the null
foliation

Symplectic matrix{
χA(x),χB (x ′)

}
= ΩAB (x , x ′) ≡ − 2ε

e2
√

γγAB ∂r δ
(3)

• If ΩAB - invertible: χA are first class (generate symmetries)

• If ΩAB - not invertible: χA are second class (eliminate redundant fields)

One possibility

• ΩAB is invertible because γAB is invertible ⇒ χA are second class

• Reduced phase space χA = 0 [Goldberg 1991, Majumdar 2022]

Other possibility

• ΩAB is invertible, but its inverse is not unique

• ΩAB is infinite-dimensional matrix and it has zero modes

⇒ χA(0)(y) is first class constraint (r -independent part of the constraint)
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Hamiltonian analysis of electromagnetism in the null
foliation

Consistency conditions

• Conservation of constraints during their evolution
π̇u = 0 ⇒ χ = ∂iπ

i ≈ 0 (differential Gauss law)

χ̇A = 0 ⇒
∫

d3x ′ΩABλ′B =
∫

d3x ′ {H′C ,χA}

• The multiplier λA is not fully determined

∂rλA =
εe2
2
√

γ ∂r π̃A
1
2r 2 ∇

BFAB +
εe2
2r 2 ∂B

(
πr√

γ

)
λA = λ̄A +ΛA(y)

• A free function ΛA(y) is due to the zero modes of ΩAB

• λ̄A - determined part of λA
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Hamiltonian analysis of electromagnetism in the null
foliation

Summary of the constraints

Primary constraints: πu , χA = επA − 1
e2
√

γγABFrB

Secondary constraint: χ = ∂iπ
i .

Class of the constraints

• πu —first class, Au behaves as a multiplier in the Hamiltonian

• χ —first class, differential Gauss law, πi =
√

γ E i

• χA(0) —first class, r -independent part of the constraint

• χA(n) (n ≥ 1) — second class, coeffi cients of the Taylor expansion in
1
r

• We have to expand all the fields asymptotically in the vicinity of the
boundary r = const → ∞.
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Hamiltonian analysis of electromagnetism in the null
foliation

Standard asymptotic conditions of the fields [Strominger 2014]

Au = O(1r ) , Ar = O( 1r 2) , AA = O(r0) ,

πu = 0 , πr = O
(
r0
)
, πA = O( 1r 2)

• Boundary fields: A(0)A = AA |r→∞, πr(0) = πr |r→∞

• Extended Hamiltonian HE = HC + λuπu + λAχA + λ ∂iπ
i

• Hamilton’s equations

Ȧu = λu , Ȧr = e2πr

r 2
√

γ
∂rλ , ȦA = e2 π̃A√

γ ∂Aλ+ ελA

π̇u = 0 , π̇r =
√

γ

e2 ∇AλA , π̇A =
√

γ

e2

(
1
r 2 ∇B F̃

AB + ∂rλ
A
)

• Fall-off of the multipliers

λu = O(1r ) , ΛA = O r0
)
, λ = O(1r )
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Hamiltonian analysis of electromagnetism in the null
foliation

Standard asymptotic conditions of the fields [Strominger 2014]

Au = O(1r ) , Ar = O( 1r 2) , AA = O(r0) ,

πu = 0 , πr = O
(
r0
)
, πA = O( 1r 2)

• Boundary fields: A(0)A = AA |r→∞, πr(0) = πr |r→∞

• Extended Hamiltonian HE = HC + λuπu + λAχA + λ ∂iπ
i

• Hamilton’s equations

Ȧu = λu , Ȧr = e2πr

r 2
√

γ
− ∂rλ , ȦA = e2 π̃A√

γ − ∂Aλ+ ελA

π̇u = 0 , π̇r =
√

γ

e2 ∇AλA , π̇A = −
√

γ

e2

(
1
r 2 ∇B F̃

AB + ∂rλ
A
)
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A new symmetry generator

SUMMARY

1st class constr. Multipliers Parameters Generators Charges

πu , χ = ∂iπ
i λu , λ θu , θ G [θ] Q [θ]

χA(0) ΛA(φ) ηA(φ) S [η] Qs [η]

• Smeared generators
G [θ] =

∫
d3x θ ∂iπ

i + θuπu
)

U(1) symmetry
S [η] =

∫
d3x ηAχA asymptotic symmetry

• New symmetry generator

- χA contains χA(0) (first class) and χA(n) (n ≥ 1) (second class)

- The basis {rn |n ∈ Z} is not complete, χA → χA(n) not invertible

- We have to ensure that χA(n) (n ≥ 1) do not contribute to δη

- ηA tends fast to η(0)A, we can take ηA = η(0)A(y)
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A new symmetry generator

• Transformation laws of the fields δθ = { ,G [θ]}, δη = { , S [η]}

δθAµ = θu δuµ − ∂i θ δiµ , δηAµ = ε ηA δAµ

δθπµ = 0 , δηπµ = 1
e2 δ

µ
r
√

γ∇AηA

F θ : Standard U(1) gauge transformations δθAµ = ∂µθ

F ηA : Act only on the boundary fields (Goldstone modes)

δηA(0)µ = ε ηA δAµ , δηπr(0) =
1
e2
√

γ∇AηA

• Transformation law of the multipliers

δλu = θ̇u , δλ = θ̇ +O(1r ) , δΛA = ε η̇A +O(1r )
• Fall-off of the local parameters

θu = O(1r ) , θ = O(r0) , ηA = O(r0)

• Improper transformations: θ(0), ηA(0) [Benguria, Cordero, Teitelboim
1977]
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A new symmetry generator

Improved generators and charges

• Improved generators

GQ [θ] = G [θ] +Q [θ] (Q [θ] = surface term)

SQ [η] = S [η] +Qs [η] (Qs [θ] = surface term)

• Differentiability

δGQ [θ] =
∫

d3x
(
GQ [θ]
δAµ

δAµ +
GQ [θ]
δπµ δπµ

)
δSQ [η] =

∫
d3x

(
SQ [η]
δAµ

δAµ +
SQ [η]
δπµ δπµ

)

• Charges (field-independent local parameters)

Q [θ] = −
∮

d2y θ πr

Qs [η] = 1
e2
∮

d2y
√

γ ηAAA

- The integral is over the two-sphere at the infinity.

- There is an infinite number of global charges, corresponding to the spherical
harmonics mode expansion (or Laurent expansion) of the local parameters.
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YAÉYA

[ALEXANDROV, SPEZIALE 2014]

Evolution is 
insensitive to the 
dynamics that is 

not prescribed on 
the initial data 

surface.

WHAT’S GOING ON?

Presentation of H. González, NordGrav @ ICEN, Iquique,  Chile, January 2023



A new symmetry generator

Charge algebra

• Reduced phase space: GQ [θ] = 0+Q [θ], SQ [η] = 0+Qs [η]
• Algebra can be computed from δθ2Q [θ1 ] = {Q [θ1 ],Q [θ2 ]}
• General form of the charge algebra: {Q [θ1 ],Q [θ2 ]} = Q [[θ1, θ2 ]] + C [θ1, θ2 ]
• In the electromagnetic theory

{Q [θ1 ],Q [θ2 ]} = 0

{Qs [η1 ],Qs [η2 ]} = 0

{Q [θ],Qs [η]} = C [θ, η] 6= 0

• Central charge C [θ, η] = 1
e2
∮

d2y
√

γ ηA∂Aθ

• Holographic conjugate pairs on S2 [Donnay,Puhm, Strominger 2019]

{Q [θ],Qs [η]} = C [θ, η] ↔ {q, p} = 1
Q [θ] —conformally soft photon mode

Qs [η] —Goldstone current
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A new symmetry generator

Algebra in modes

• Laurent series

ψ(z , z̄) =
+∞
∑

n=−∞

+∞
∑

m=−∞

ψnm
zn+h z̄m+h̄

• The powers (h, h̄) are related to the spin of the tensor ψ

- Scalars πr : (0, 0)

- Vectors:Az : (1, 0), Az̄ : (0, 1)

• Charges

Q [θ] = ∑n,m θnmGnm ∈ R

Qs [η] = ∑n,m (ηnm S̄nm + η̄nmSnm) ∈ R

• Generators

Gnm = 4π2 π1−n,1−m

Snm = − 4π2

e2 A−n,−m

S̄nm = − 4π2

e2 Ā−n,−m

Olivera Miškovíc - February 2023 () Light front EM (PUCV) 21 / 30



A new symmetry generator

Algebra in modes

• Laurent series

ψ(z , z̄) =
+∞
∑

n=−∞

+∞
∑

m=−∞

ψnm
zn+h z̄m+h̄

• The powers (h, h̄) are related to the spin of the tensor ψ

- Scalars πr : (0, 0)

- Vectors:Az : (1, 0), Az̄ : (0, 1)

• Charges

Q [θ] = ∑n,m θnmGnm ∈ R

Qs [η] = ∑n,m (ηnm S̄nm + η̄nmSnm) ∈ R

• Generators

Gnm = 4π2 π1−n,1−m

Snm = − 4π2

e2 A−n,−m

S̄nm = − 4π2
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A new symmetry generator

• Algebra (non vanishing brackets only)

{Gnm , Skl} = κn δn+k ,0δm+l ,0

{Gnm , S̄kl} = κm δn+k ,0δm+l ,0

• Level of the algebra: κ = 4π2

e2

• Change of the basis: (Gnm ,Snm , S̄nm)→ (Rnm , Jnm , J̄nm)

• Generalization of Kac-Moody algebra

{Jnm , Jkl} = κ (n m) δn+k ,0δm+l ,0

{J̄nm , J̄kl} = κ (n m) δn+k ,0δm+l ,0

{Rnm , Jkl} = κn δn+k ,0δm+l ,0

{Rnm , J̄kl} = κm δn+k ,0δm+l ,0

{Rnm ,Rkl} = κ (n+m) δn+k ,0δm+l ,0
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A new symmetry generator

Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras {jn , jm} = κn δn+m,0

Currents jn Levels

Jn0, J0n κ,−κ

J̄n0, J̄0n −κ, κ

Rn0,R0n κ, κ

• Non vanishing mixed brackets: {Rn0, Jm0} , {R0n , J̄0m} 6= 0

• Each KM algebra is naturally generated by current proportional to a
holomorphic or anti-holomorphic functions.

• {J00, J̄00,R00} span the global Abelian algebra
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A new symmetry generator

Beyond U(1) —conformal symmetry

• Conformal plane —a realization of conformal symmetry described by Virasoro
algebra

• Witt algebra —obtained from KM algebra using the Sugawara construction
[Sugawara 1967]

• We have several Witt algebras, not all of them independent

• Witt generators Ln = 1
2κ ∑

k
jk jn k

• Witt algebras {Ln , Lm} = (n m) Ln+m

• Quantization introduces a central extension.

• In progress: Relation to the global 4D Poincaré generators.
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Extension to Yang-Mills theory

• Zero mode

∂rVA = −[Ar ,VA ] ⇒ VA(x) = U−1V(0)A(y)U,

with U = exp
(
−
∫ ∞
r dr Ar

)
and the bdy. condition VA |r→∞ = V(0)A(y)

• Charges

Q [θ] = −
∮

d2y θaπra , Qs [η] = 1
g 2
∮

d2y
√

γ ηaAA
A
a

• Local transformations
δθ,ηAau = θau δθ,ηAar = −Dr θa

δθ,ηAaA = −DAθa + ε ηaA

• Non-Abelian charge algebra

{Q [θ1 ],Q [θ2 ]} = Q [[θ1, θ2 ]]

{Q [θ],Qs [η]} = Qs [[θ, η]] + 1
g 2
∮

d2y
√

γ ηAa ∂Aθa

{Qs [η1 ],Qs [η2 ]} = 0 → Qs is Abelian
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Extension to Yang-Mills theory

Yang-Mills theory

I [A] = − 1
4g 2
∫

d4x
√
gF µν

a F aµν; F aµν = ∂µAaν − ∂νAaµ + f
a
bcA

b
µA
c
ν

• Constraints

πua ≈ 0 , χAa ≡ ε πAa − 1
g 2
√

γγABF arB ≈ 0, χa ≡ Diπia ≈ 0

• Constraint algebra{
χa,χ

′
b

}
= f c

ab χc δ(3){
χa,χ

′A
b

}
= f c

ab χAc δ(3){
χAa ,χ

′B
b

}
= ΩAB

ab (x , x
′)

• Non-Abelian symplectic matrix

ΩAB
ab (x , x

′) = − 2ε
g 2
√

γγAB (gab ∂r + fabc Acr ) δ(3)
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Extension to Yang-Mills theory

• Mode algebra{
G anm ,G

b
kl

}
= f abc G

c
n+k ,m+l{

G anm , S
b
kl

}
= f abc S

c
n+k ,m+l + κngabδn+k ,0δm+l ,0{

G anm , S̄
b
kl

}
= f abc S̄

c
n+k ,m+l + κmgabδn+k ,0δm+l ,0

• Level κ = 4π2

g 2

• One can apply the Sugawara method again...

• We conclude that the symmetries at the asymptotic null boundary, described
by KM algebras and Virasoro algebras, are general features of 4D gauge
theories
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Discussion

Asymptotic conditions

• Invariance of boundary conditions under Poincaré transformatons is not
straighforward

• Hamiltonian treatment at spatial infinity needs additional parity conditions
to ensure invariance under boosts.

- Electromagnetism [Henneaux, Troessaert 2018] ;

- Yang-Mills [Tanzi, Giulini 2020]

• Null-slices foliated standard b.c. in electromagnetism are invariant under
Poincaré group. [Bunster, Gomberoff, Pérez 2018]

• We showed the Poincaré invariance in the non-Abelian case.
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Discussion

Poincaré transfromations

• We found several Kac-Moody algebras, but not all of them are related to the
global Poincaré symmetry in 4D spacetime.

• We constructed a generator of 4D Poincaré transformations and its action at
the light front, by writing the YM stress tensor in the canonical form,

T µ
ν =

1
g 2

(
F µα
a F aνα − 1

4 δ
µ
ν F

αβ
a F aαβ

)
• We are working on showing its relation with the Virasoro generators.

To be done

• Hamiltonian treatment of the gravitatonal action using the null foliation.

• Description of a holographic theory.

• Addition of the θ-term in the action (Pontryagin topological invariant with
the couplig θ), which will change the central charges.
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