### Symmetries of the gauge theories in the light front

#### Olivera Mišković

#### Pontificia Universidad Católica de Valparaíso, Chile

#### Collaborators Oriana Labrin (PUCV, Chile), Hernán González (UAI, Chile)

arXiv: 2302.xxxx



Workshop on Gravity, Holography, Strings & Noncommutative Geometry 3<sup>rd</sup> February 2023, Belgrade, Serbia

1 Infrared structure of gauge theories

E

イロト イヨト イヨト イヨト

- 1 Infrared structure of gauge theories
- **2** Hamiltonian analysis of electromagnetism in the null foliation

3

・ロト ・回 ト ・ ヨト ・

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- **3** New symmetry generator; Beyond U(1)

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- **3** New symmetry generator; Beyond U(1)
- Extension to Yang-Mills theory

- 1 Infrared structure of gauge theories
- 2 Hamiltonian analysis of electromagnetism in the null foliation
- **3** New symmetry generator; Beyond U(1)
- Extension to Yang-Mills theory
- **5** Discussion

IR region of theories with massless particles in asymptotically flat spaces

#### IR region of theories with massless particles in asymptotically flat spaces



#### Motivation

- Hamiltonian treatment of asymptotic symmetries [Bondi, van der Burg, Metzner 1962; Sachs 1962]
- **BMS symmetry** infinite-dimensional asymptotic symmetry at the null boundary of 4D asymptotically flat spacetimes

### • Celestial holography

- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on the celestial sphere

#### Motivation

- Hamiltonian treatment of asymptotic symmetries [Bondi, van der Burg, Metzner 1962; Sachs 1962]
- **BMS symmetry** infinite-dimensional asymptotic symmetry at the null boundary of 4D asymptotically flat spacetimes

### • Celestial holography

- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on the celestial sphere
- Asymptotic symmetries in Electromagnetic and Yang-Mills theories
- 2D realization of soft symmetries in electromagnetism

[He, Mitra, Porfyriadis, Strominger 2014; Nande, Pate, Strominger 2018]

• Extension to Yang-Mills [Strominger 2014; He, Mitra, Strominger, 2016]

Э

イロト イヨト イヨト イヨト

### Vacuum degeneracy in gauge theories $(\omega \rightarrow 0)$

 $\Leftrightarrow$  Enhancement of symmetries at the boundary of flat spacetime  $(r \to \infty)$ 

#### Vacuum degeneracy in gauge theories $(\omega \rightarrow 0)$

 $\Leftrightarrow$  Enhancement of symmetries at the boundary of flat spacetime  $(r 
ightarrow \infty)$ 

• Goldstone modes, do not leave the vacuum invariant:  $e^{S[\eta]} |\psi\rangle = |\psi + \eta\rangle$ 

### Infrared structure of gauge theories

#### Vacuum degeneracy in gauge theories $(\omega \rightarrow 0)$

 $\Leftrightarrow$  Enhancement of symmetries at the boundary of flat spacetime  $(r 
ightarrow \infty)$ 

• Goldstone modes, do not leave the vacuum invariant:  $e^{S[\eta]} |\psi\rangle = |\psi + \eta\rangle$ 



5 / 30

### Infrared structure of gauge theories

#### Penrose diagram of the Minkowski space



6 / 30

#### Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates  $(t, r, y^A)$ 

 $M_4: ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$  $S^2: d\Omega^2 = \gamma_{AB}(y) dy^A dy^B$ 

#### Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates  $(t, r, y^A)$ 

 $M_4: ds^2 = -dt^2 + dr^2 + r^2 d\Omega^2$ 

 $\mathbb{S}^2: \quad \mathrm{d}\Omega^2 = \gamma_{AB}(y)\,\mathrm{d}y^A\mathrm{d}y^B$ 

- Time coordinate  $u = t \epsilon r$ ,  $-1 \le \epsilon \le 1$ 
  - $\epsilon = 1$  retarded time
  - $\epsilon = 0$  proper time of a massive particle
  - $\epsilon = -1$  advanced time

3

7 / 30

#### Null foliated reference frame

• Minkowski metric in D = 4 in the spherical coordinates  $(t, r, y^A)$ 

 $M_4: \quad \mathrm{d}s^2 = -\mathrm{d}t^2 + \mathrm{d}r^2 + r^2\mathrm{d}\Omega^2$ 

 $\mathbb{S}^2$ :  $\mathrm{d}\Omega^2 = \gamma_{AB}(y) \,\mathrm{d}y^A \mathrm{d}y^B$ 

- Time coordinate  $u = t \epsilon r$ ,  $-1 \le \epsilon \le 1$ 
  - $\epsilon = 1$  retarded time
  - $\epsilon = 0$  proper time of a massive particle
  - $\epsilon = -1$  advanced time
- Coordinates on S<sup>2</sup>: stereographic projection  $(\theta, \varphi) \rightarrow y^{A} = (z, \bar{z})$

$$z={
m e}^{{
m i}arphi}\cotrac{ heta}{2}$$
 ,  $ar z={
m e}^{-{
m i}arphi}\cotrac{ heta}{2}$ 



• Minkowski metric  $g_{\mu\nu}$  in the coordinates  $x^{\mu} = (u, r, y^{A})$ :

$$\mathrm{d} s^2 = -\mathrm{d} u^2 - 2\epsilon \,\mathrm{d} u \mathrm{d} r + \left(1 - \epsilon^2\right) \mathrm{d} r^2 + r^2 \mathrm{d} \Omega^2$$

•  $\mathbb{S}^2$  metric in complex coordinates

$$\gamma_{AB} = \left( egin{array}{cc} 0 & \gamma_{zar{z}} \ \gamma_{zar{z}} & 0 \end{array} 
ight), \quad \gamma_{zar{z}} = rac{2}{(1+zar{z})^2} = \sqrt{\gamma}$$

8 / 30

Image: A match a ma

- Electromagnetic action in the background  $\mathfrak{g}_{\mu\nu}$ 

$$I[A] = -\frac{1}{4e^2} \int d^4 x \sqrt{\mathfrak{g}} F^{\mu\nu} F_{\mu\nu} \qquad (F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})$$

• Canonical momenta  $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} F^{\mu\mu}$ 

9 / 30

<ロ> <四> <四> <三> <三> <三> <三>

• Electromagnetic action in the background  $\mathfrak{g}_{\mu\nu}$ 

$$I[A] = -\frac{1}{4e^2} \int d^4 x \sqrt{\mathfrak{g}} F^{\mu\nu} F_{\mu\nu} \qquad (F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})$$

• Canonical momenta  $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} F^{\mu\mu}$ 

In components:

$$\begin{aligned} \pi^{u} &= 0 \\ \pi^{r} &= \frac{r^{2}}{e^{2}} \sqrt{\gamma} F_{ur} \\ \pi^{A} &= -\frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} \left[ (\epsilon^{2} - 1) F_{uB} - \epsilon F_{rB} \right] \end{aligned}$$

9 / 30

• Electromagnetic action in the background  $\mathfrak{g}_{\mu\nu}$ 

$$I[A] = -\frac{1}{4e^2} \int d^4 x \sqrt{\mathfrak{g}} F^{\mu\nu} F_{\mu\nu} \qquad (F_{\mu\nu} = \partial_{\mu} A_{\nu} - \partial_{\nu} A_{\mu})$$

• Canonical momenta  $\pi^{\mu} = -\frac{1}{e^2} \sqrt{\mathfrak{g}} F^{\mu\mu}$ 

In components:

$$\begin{aligned} \pi^{u} &= 0 \\ \pi^{r} &= \frac{r^{2}}{e^{2}} \sqrt{\gamma} F_{ur} \\ \pi^{A} &= -\frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} \left[ (\epsilon^{2} - 1) F_{uB} - \epsilon F_{rB} \right] \end{aligned}$$

- The limit  $\epsilon^2 
  ightarrow 1$  is discontinuous
- The action in the light-cone  $(\epsilon^2 = 1)$  has an additional constraint
- Light-cone actions are first order in velocities [Steinhardt 1980]

9 / 30

Bondi reference frame:  $\epsilon^2 = 1$ 

• Primary constraints

$$\pi^{u} pprox 0$$
,  $\chi^{A} \equiv \epsilon \pi^{A} - rac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} pprox 0$ 

Image: A match a ma

Bondi reference frame:  $\epsilon^2 = 1$ 

• Primary constraints

$$\pi^{u} pprox 0$$
 ,  $\chi^{A} \equiv \epsilon \pi^{A} - rac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} pprox 0$ 

- Canonical Hamiltonian  $\mathcal{H}_{C}=\pi^{\mu}\dot{A}_{\mu}-\mathcal{L}$ 

$$\mathcal{H}_{C} = rac{e^{2}(\pi^{r})^{2}}{2r^{2}\sqrt{\gamma}} + rac{e^{2} ilde{\pi}_{A}\pi^{A}}{2\sqrt{\gamma}} + rac{\sqrt{\gamma}}{4e^{2}r^{2}} ilde{F}^{AB}F_{AB} - A_{u}\partial_{i}\pi^{i}$$

Bondi reference frame:  $\epsilon^2 = 1$ 

• Primary constraints

$$\pi^{u} pprox 0$$
 ,  $\chi^{A} \equiv \epsilon \pi^{A} - rac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} pprox 0$ 

• Canonical Hamiltonian  $\mathcal{H}_{C}=\pi^{\mu}\dot{A}_{\mu}-\mathcal{L}$ 

$$\mathcal{H}_{\mathcal{C}} = rac{e^2(\pi^r)^2}{2r^2\sqrt{\gamma}} + rac{e^2 ilde{\pi}_A\pi^A}{2\sqrt{\gamma}} + rac{\sqrt{\gamma}}{4e^2r^2}\, ilde{\mathcal{F}}^{AB}\mathcal{F}_{AB} - \mathcal{A}_u\partial_i\pi^i$$

• Total Hamiltonian [Dirac 1964]

 $\mathcal{H}_{T} = \mathcal{H}_{C} + \lambda_{u} \pi^{u} + \lambda_{A} \chi^{A}$ 

 $\lambda_u(x), \, \lambda_A(x) =$  Hamiltonian multipliers

Bondi reference frame:  $\epsilon^2 = 1$ 

• Primary constraints

$$\pi^{u} \approx 0, \quad \chi^{A} \equiv \epsilon \pi^{A} - \frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} \approx 0$$

• Canonical Hamiltonian  $\mathcal{H}_{C}=\pi^{\mu}\dot{A}_{\mu}-\mathcal{L}$ 

$$\mathcal{H}_{\mathcal{C}} = rac{e^2(\pi^r)^2}{2r^2\sqrt{\gamma}} + rac{e^2 ilde{\pi}_A\pi^A}{2\sqrt{\gamma}} + rac{\sqrt{\gamma}}{4e^2r^2}\, ilde{\mathcal{F}}^{AB}\mathcal{F}_{AB} - \mathcal{A}_u\partial_i\pi^i$$

• Total Hamiltonian [Dirac 1964]

 $\mathcal{H}_{T} = \mathcal{H}_{C} + \lambda_{u}\pi^{u} + \lambda_{A}\chi^{A}$ 

 $\lambda_u(x)$ ,  $\lambda_A(x) =$  Hamiltonian multipliers

• Canonical Poisson brackets  $\{A_{\mu}(x), \pi^{\nu}(x')\}_{\mu=\mu'} = \delta^{\nu}_{\mu} \delta^{(3)}(x-x')$ 

• Evolution  $\dot{\Phi}(x) \approx \{\Phi(x), H_T\} = \int d^3x' \{\Phi(x), \mathcal{H}_T(x')\}$ 

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

#### Comment

- We always have two different Hamiltonians  $\epsilon = \pm 1$ .
- The future cone  $\epsilon = +1$  and the past cone  $\epsilon = -1$  are causally disconnected.
- Common boundary  $i^0$  is located at the spatial infinity.

#### Comment

- We always have two different Hamiltonians  $\epsilon = \pm 1$ .
- The future cone  $\epsilon = +1$  and the past cone  $\epsilon = -1$  are causally disconnected.
- Common boundary *i*<sup>0</sup> is located at the spatial infinity.
- A radial wave located at (u, r) propagates along  $v = t + \epsilon r = const$ .
- In absence of massive particles, the future lightlike infinity  $\mathcal{J}^+ = \mathcal{J}^+(t-r,y)$  and the past lightlike infinity  $\mathcal{J}^- = \mathcal{J}^-(t+r,y)$  behave as Cauchy surfaces [Hawking, Perry, Strominger 2016].



< □ > < 同 >

Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

Image: A match a ma

Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If  $\Omega^{AB}$  invertible:  $\chi^A$  are **first class** (generate symmetries)
- If  $\Omega^{AB}$  not invertible:  $\chi^A$  are second class (eliminate redundant fields)

#### Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If  $\Omega^{AB}$  invertible:  $\chi^A$  are **first class** (generate symmetries)
- If  $\Omega^{AB}$  not invertible:  $\chi^A$  are second class (eliminate redundant fields)

#### One possibility

- $\Omega^{AB}$  is invertible because  $\gamma^{AB}$  is invertible  $\Rightarrow \chi^A$  are second class
- Reduced phase space  $\chi^A = 0$  [Goldberg 1991, Majumdar 2022]

### Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If  $\Omega^{AB}$  invertible:  $\chi^A$  are **first class** (generate symmetries)
- If  $\Omega^{AB}$  not invertible:  $\chi^A$  are second class (eliminate redundant fields)

### One possibility

- $\Omega^{AB}$  is invertible because  $\gamma^{AB}$  is invertible  $\Rightarrow \chi^A$  are second class
- Reduced phase space  $\chi^A = 0$  [Goldberg 1991, Majumdar 2022]

#### Other possibility

- $\Omega^{AB}$  is invertible, but its inverse is not unique
- $\Omega^{AB}$  is infinite-dimensional matrix and it has zero modes

 $\int \mathrm{d}^3 x' \,\Omega^{AB} V'_B = -\tfrac{2\epsilon}{e^2} \sqrt{\gamma} \gamma^{AB} \partial_r V_B = 0 \quad \Rightarrow \quad \bigvee_{A \equiv b} V_B = V_B(y)$ 

### Symplectic matrix

$$\left\{\chi^{A}(x),\chi^{B}(x')\right\} = \Omega^{AB}(x,x') \equiv -\frac{2\epsilon}{e^{2}}\sqrt{\gamma}\gamma^{AB}\partial_{r}\delta^{(3)}$$

- If  $\Omega^{AB}$  invertible:  $\chi^A$  are **first class** (generate symmetries)
- If  $\Omega^{AB}$  not invertible:  $\chi^A$  are second class (eliminate redundant fields)

### One possibility

- $\Omega^{AB}$  is invertible because  $\gamma^{AB}$  is invertible  $\Rightarrow \chi^A$  are second class
- Reduced phase space  $\chi^{A} = 0$  [Goldberg 1991, Majumdar 2022]

#### Other possibility

- $\Omega^{AB}$  is invertible, but its inverse is not unique
- $\Omega^{AB}$  is infinite-dimensional matrix and it has zero modes

 $\Rightarrow \chi^{A}_{(0)}(y)$  is first class constraint (*r*-independent part of the constraint)

13 / 30

**Consistency conditions** 

(日) (同) (三) (

#### **Consistency conditions**

• Conservation of constraints during their evolution

$$\begin{split} \dot{\pi}^{u} &= 0 \qquad \Rightarrow \quad \chi = \partial_{i}\pi^{i} \approx 0 \quad \text{(differential Gauss law)} \\ \dot{\chi}^{A} &= 0 \qquad \Rightarrow \quad \int d^{3}x' \,\Omega^{AB}\lambda'_{B} = \int d^{3}x' \,\{\mathcal{H}'_{C},\chi^{A}\} \end{split}$$

#### **Consistency conditions**

• Conservation of constraints during their evolution

$$\begin{split} \dot{\pi}^{u} &= 0 \qquad \Rightarrow \quad \chi = \partial_{i} \pi^{i} \approx 0 \quad \text{(differential Gauss law)} \\ \dot{\chi}^{A} &= 0 \qquad \Rightarrow \quad \int d^{3} x' \, \Omega^{AB} \lambda'_{B} = \int d^{3} x' \left\{ \mathcal{H}'_{C}, \chi^{A} \right\} \end{split}$$

• The multiplier  $\lambda_A$  is not fully determined

$$\partial_r \lambda_A = -\frac{\epsilon e^2}{2\sqrt{\gamma}} \partial_r \tilde{\pi}_A - \frac{1}{2r^2} \nabla^B F_{AB} + \frac{\epsilon e^2}{2r^2} \partial_B \left(\frac{\pi^r}{\sqrt{\gamma}}\right)$$
$$\lambda_A = \bar{\lambda}_A + \Lambda_A(y)$$

- A free function  $\Lambda_A(y)$  is due to the zero modes of  $\Omega^{AB}$
- $\bar{\lambda}_A$  determined part of  $\lambda_A$

イロト イポト イヨト イヨト 二日

#### Summary of the constraints

 $\begin{array}{ll} \text{Primary constraints:} & \pi^{u} \,, \quad \chi^{A} = \epsilon \pi^{A} - \frac{1}{e^{2}} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \text{Secondary constraint:} & \chi = \partial_{i} \pi^{i} \,. \end{array}$
#### Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$ 

#### **Class of the constraints**

#### Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$ 

#### **Class of the constraints**

•  $\pi^u$  – first class,  $A_u$  behaves as a multiplier in the Hamiltonian

#### Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$ 

#### **Class of the constraints**

- $\pi^u$  first class,  $A_u$  behaves as a multiplier in the Hamiltonian
- $\chi$  first class, differential Gauss law,  $\pi^i = \sqrt{\gamma} E^i$

イロト イポト イヨト イヨト

#### Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$ 

#### **Class of the constraints**

- $\pi^u$  first class,  $A_u$  behaves as a multiplier in the Hamiltonian
- $\chi$  first class, differential Gauss law,  $\pi^i = \sqrt{\gamma} E^i$
- $\chi^{A}_{(0)}$  first class, r-independent part of the constraint

#### Summary of the constraints

 $\begin{array}{ll} \mbox{Primary constraints:} & \pi^u \,, & \chi^A = \epsilon \pi^A - \frac{1}{e^2} \sqrt{\gamma} \gamma^{AB} F_{rB} \\ \mbox{Secondary constraint:} & \chi = \partial_i \pi^i \,. \end{array}$ 

#### **Class of the constraints**

- $\pi^u$  first class,  $A_u$  behaves as a multiplier in the Hamiltonian
- $\chi$  first class, differential Gauss law,  $\pi^i = \sqrt{\gamma} E^i$
- $\chi^{A}_{(0)}$  first class, r-independent part of the constraint
- $\chi^{\mathcal{A}}_{(n)}$   $(n\geq 1)$  second class, coefficients of the Taylor expansion in  $rac{1}{r}$
- We have to expand all the fields asymptotically in the vicinity of the boundary r = const → ∞.

Standard asymptotic conditions of the fields [Strominger 2014]

$$\begin{aligned} A_u &= \mathcal{O}(\frac{1}{r}), \qquad A_r &= \mathcal{O}(\frac{1}{r^2}), \qquad A_A &= \mathcal{O}(r^0), \\ \pi^u &= 0, \qquad \pi^r &= \mathcal{O}(r^0), \qquad \pi^A &= \mathcal{O}(\frac{1}{r^2}) \end{aligned}$$

• Boundary fields:  $A_{(0)A} = A_A|_{r \to \infty}$ ,  $\pi^r_{(0)} = \pi^r|_{r \to \infty}$ 

イロト イポト イヨト イ

(PUCV)

16 / 30

Standard asymptotic conditions of the fields [Strominger 2014]

$$\begin{aligned} A_u &= \mathcal{O}(\frac{1}{r}), \qquad A_r &= \mathcal{O}(\frac{1}{r^2}), \qquad A_A &= \mathcal{O}(r^0), \\ \pi^u &= 0, \qquad \pi^r &= \mathcal{O}(r^0), \qquad \pi^A &= \mathcal{O}(\frac{1}{r^2}) \end{aligned}$$

- Boundary fields:  $A_{(0)A} = A_A|_{r \to \infty}$ ,  $\pi^r_{(0)} = \pi^r|_{r \to \infty}$
- Extended Hamiltonian  $\mathcal{H}_E = \mathcal{H}_C + \lambda_u \pi^u + \lambda_A \chi^A + \lambda \partial_i \pi^i$
- Hamilton's equations

$$\dot{A}_{u} = \lambda_{u}, \quad \dot{A}_{r} = \frac{e^{2}\pi^{r}}{r^{2}\sqrt{\gamma}} - \partial_{r}\lambda, \quad \dot{A}_{A} = \frac{e^{2}\tilde{\pi}_{A}}{\sqrt{\gamma}} - \partial_{A}\lambda + \epsilon\lambda_{A}$$

$$\dot{\pi}^{u} = 0, \quad \dot{\pi}^{r} = \frac{\sqrt{\gamma}}{e^{2}}\nabla_{A}\lambda^{A}, \quad \dot{\pi}^{A} = -\frac{\sqrt{\gamma}}{e^{2}}\left(\frac{1}{r^{2}}\nabla_{B}\tilde{F}^{AB} + \partial_{r}\lambda^{A}\right)$$

Fall-off of the multipliers

 $\lambda_u = \mathcal{O}(\frac{1}{r}), \qquad \Lambda_A = \mathcal{O}\left(r^0\right), \qquad \lambda = \underbrace{\mathcal{O}}(\frac{1}{r})_{\text{ind} r} + \operatorname{ind} r = \operatorname{ind} r$ 

(PUCV)

16 / 30

## **SUMMARY**

| 1 <sup>st</sup> class constr.                                  | Multipliers                                            | Parameters                        | Generators         | Charges                                             |
|----------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|--------------------|-----------------------------------------------------|
| $\pi^{u},\;\chi=\partial_{i}\pi^{i}\ \chi^{\mathcal{A}}_{(0)}$ | $\lambda_{u}, \ \lambda \ \Lambda_{\mathcal{A}}(\phi)$ | $	heta_u, \ 	heta \ \eta_A(\phi)$ | $G[	heta] S[\eta]$ | $egin{array}{l} Q[	heta] \ Q_{s}[\eta] \end{array}$ |

E

DQC

イロト イヨト イヨト イヨト

### SUMMARY

| 1 <sup>st</sup> class constr.                                | Multipliers                            | Parameters                        | Generators         | Charges                                           |
|--------------------------------------------------------------|----------------------------------------|-----------------------------------|--------------------|---------------------------------------------------|
| $\pi^{u}$ , $\chi = \partial_{i}\pi^{i}$<br>$\chi^{A}_{(0)}$ | $\lambda_u, \ \lambda \Lambda_A(\phi)$ | $	heta_u, \ 	heta \ \eta_A(\phi)$ | $G[	heta] S[\eta]$ | $egin{array}{l} Q[	heta] \ Q_s[\eta] \end{array}$ |

- Smeared generators
  - $\begin{array}{ll} G[\theta] &= \int \mathrm{d}^{3}x \left(\theta \, \partial_{i} \pi^{i} + \theta_{u} \pi^{u}\right) & \mathrm{U}(1) \text{ symmetry} \\ S[\eta] &= \int \mathrm{d}^{3}x \, \eta_{A} \chi^{A} & \text{asymptotic symmetry} \end{array}$

<ロト <回ト < 臣ト < 臣ト

## SUMMARY

| 1 <sup>st</sup> class constr.                              | Multipliers                                            | Parameters                        | Generators         | Charges                                             |
|------------------------------------------------------------|--------------------------------------------------------|-----------------------------------|--------------------|-----------------------------------------------------|
| $\pi^{u}$ , $\chi=\partial_{i}\pi^{i}$<br>$\chi^{A}_{(0)}$ | $\lambda_{u}, \ \lambda \ \Lambda_{\mathcal{A}}(\phi)$ | $	heta_u, \ 	heta \ \eta_A(\phi)$ | $G[	heta] S[\eta]$ | $egin{array}{l} Q[	heta] \ Q_{s}[\eta] \end{array}$ |

Smeared generators

 $\begin{array}{ll} G[\theta] &= \int \mathrm{d}^3 x \left( \theta \, \partial_i \pi^i + \theta_u \pi^u \right) & \mathrm{U}(1) \text{ symmetry} \\ S[\eta] &= \int \mathrm{d}^3 x \, \eta_A \chi^A & \text{asymptotic symmetry} \end{array}$ 

- New symmetry generator
- $\chi^{\mathcal{A}}$  contains  $\chi^{\mathcal{A}}_{(0)}$  (first class) and  $\chi^{\mathcal{A}}_{(n)}$   $(n\geq 1)$  (second class)
- The basis  $\{r^n|n\in\mathbb{Z}\}$  is not complete,  $\chi^{\mathcal{A}} o\chi^{\mathcal{A}}_{(n)}$  not invertible
- We have to ensure that  $\chi^{\mathcal{A}}_{(n)}~(n\geq 1)$  do not contribute to  $\delta_{\eta}$

-  $\eta_A$  tends fast to  $\eta_{(0)A}$ , we can take  $\eta_A = \eta_{(0)A}(y)$ 

• Transformation laws of the fields  $\delta_{\theta} = \{ , G[\theta] \}, \delta_{\eta} = \{ , S[\eta] \}$ 

$$\begin{split} \delta_{\theta} A_{\mu} &= \theta_{u} \, \delta^{u}_{\mu} - \partial_{i} \theta \, \delta^{i}_{\mu} \,, \qquad \delta_{\eta} A_{\mu} &= \epsilon \, \eta_{A} \, \delta^{A}_{\mu} \\ \delta_{\theta} \pi^{\mu} &= 0 \,, \qquad \qquad \delta_{\eta} \pi^{\mu} &= \frac{1}{e^{2}} \, \delta^{\mu}_{r} \sqrt{\gamma} \, \nabla_{A} \eta^{A} \end{split}$$

・ロト ・回 ト ・ ヨト ・

• Transformation laws of the fields  $\delta_{\theta} = \{ , G[\theta] \}, \delta_{\eta} = \{ , S[\eta] \}$ 

$$\begin{aligned} \delta_{\theta} A_{\mu} &= \theta_{u} \, \delta_{\mu}^{u} - \partial_{i} \theta \, \delta_{\mu}^{i} , \qquad \delta_{\eta} A_{\mu} &= \epsilon \, \eta_{A} \, \delta_{\mu}^{A} \\ \delta_{\theta} \pi^{\mu} &= 0 , \qquad \qquad \delta_{\eta} \pi^{\mu} &= \frac{1}{e^{2}} \, \delta_{r}^{\mu} \sqrt{\gamma} \, \nabla_{A} \eta^{A} \end{aligned}$$

igstarrow heta : Standard U(1) gauge transformations  $\delta_{ heta} A_{\mu} = -\partial_{\mu} heta$ 

 $\star \eta^A$ : Act only on the boundary fields (Goldstone modes)

$$\delta_{\eta}A_{(0)\mu} = \epsilon \eta_A \delta^A_{\mu}, \quad \delta_{\eta}\pi^r_{(0)} = \frac{1}{e^2}\sqrt{\gamma} \nabla_A \eta^A$$

(PUCV)

• Transformation laws of the fields  $\delta_{\theta} = \{ , G[\theta] \}, \delta_{\eta} = \{ , S[\eta] \}$ 

$$\begin{aligned} \delta_{\theta} A_{\mu} &= \theta_{u} \, \delta_{\mu}^{u} - \partial_{i} \theta \, \delta_{\mu}^{i} \,, \qquad \delta_{\eta} A_{\mu} &= \epsilon \, \eta_{A} \, \delta_{\mu}^{A} \\ \delta_{\theta} \pi^{\mu} &= 0 \,, \qquad \qquad \delta_{\eta} \pi^{\mu} &= \frac{1}{e^{2}} \, \delta_{r}^{\mu} \sqrt{\gamma} \, \nabla_{A} \eta^{A} \end{aligned}$$

igstarrow heta : Standard U(1) gauge transformations  $\delta_{ heta} {\sf A}_{\mu} = - \partial_{\mu} heta$ 

 $\star \eta^A$ : Act only on the boundary fields (Goldstone modes)

$$\delta_{\eta}A_{(0)\mu} = \epsilon \eta_{A} \delta^{A}_{\mu}, \quad \delta_{\eta}\pi^{r}_{(0)} = \frac{1}{e^{2}}\sqrt{\gamma} \nabla_{A}\eta^{A}$$

- Transformation law of the multipliers
  - $\delta\lambda_{u} = \dot{\theta}_{u}, \qquad \delta\lambda = \dot{\theta} + \mathcal{O}(\frac{1}{r}), \qquad \delta\Lambda_{A} = \epsilon \,\dot{\eta}_{A} + \mathcal{O}(\frac{1}{r})$
- Fall-off of the local parameters

$$\theta_u = \mathcal{O}(\frac{1}{r}), \qquad \theta = \mathcal{O}(r^0), \qquad \eta^A = \mathcal{O}(r^0)$$

Improper transformations: θ<sub>(0)</sub>, η<sup>A</sup><sub>(0)</sub>
 [Benguria, Cordero, Teitelboim 1977]

イロト 不得下 イヨト イヨト 二日

Improved generators and charges

• Improved generators

 $\begin{array}{ll} G_Q[\theta] &= G[\theta] + Q[\theta] & (Q[\theta] = \text{ surface term}) \\ S_Q[\eta] &= S[\eta] + Q_s[\eta] & (Q_s[\theta] = \text{ surface term}) \end{array}$ 

Differentiability

$$\begin{split} \delta G_Q[\theta] &= \int d^3 x \, \left( \frac{G_Q[\theta]}{\delta A_\mu} \, \delta A_\mu + \frac{G_Q[\theta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \\ \delta S_Q[\eta] &= \int d^3 x \, \left( \frac{S_Q[\eta]}{\delta A_\mu} \, \delta A_\mu + \frac{S_Q[\eta]}{\delta \pi^\mu} \, \delta \pi^\mu \right) \end{split}$$

3

19 / 30

Improved generators and charges

• Improved generators

 $\begin{array}{ll} G_Q[\theta] &= G[\theta] + Q[\theta] & (Q[\theta] = \text{ surface term}) \\ S_O[\eta] &= S[\eta] + Q_s[\eta] & (Q_s[\theta] = \text{ surface term}) \end{array}$ 

Differentiability

$$\begin{split} \delta G_Q[\theta] &= \int d^3 x \, \left( \frac{G_Q[\theta]}{\delta A_{\mu}} \, \delta A_{\mu} + \frac{G_Q[\theta]}{\delta \pi^{\mu}} \, \delta \pi^{\mu} \right) \\ \delta S_Q[\eta] &= \int d^3 x \, \left( \frac{S_Q[\eta]}{\delta A_{\mu}} \, \delta A_{\mu} + \frac{S_Q[\eta]}{\delta \pi^{\mu}} \, \delta \pi^{\mu} \right) \end{split}$$

• Charges (field-independent local parameters)

 $Q[\theta] = -\oint d^2 y \,\theta \,\pi^r$  $Q_s[\eta] = \frac{1}{a^2} \oint d^2 y \,\sqrt{\gamma} \,\eta^A A_A$ 

- The integral is over the two-sphere at the infinity.
  - There is an infinite number of global charges, corresponding to the spherical harmonics mode expansion (or Laurent expansion) of the local parameters.

# WHAT'S GOING ON?



Evolution is insensitive to the dynamics that is not prescribed on the initial data surface.

[ALEXANDROV, SPEZIALE 2014]

Presentation of H. González, NordGrav @ ICEN, Iquique, Chile, January 2023

## Charge algebra

- Reduced phase space:  $G_Q[\theta] = 0 + Q[\theta]$ ,  $S_Q[\eta] = 0 + Q_s[\eta]$
- Algebra can be computed from  $\delta_{\theta_2} Q[\theta_1] = \{Q[\theta_1], Q[\theta_2]\}$
- General form of the charge algebra:  $\{Q[\theta_1], Q[\theta_2]\} = Q[[\theta_1, \theta_2]] + C[\theta_1, \theta_2]$
- In the electromagnetic theory

 $\{Q[\theta_1], Q[\theta_2]\} = 0$  $\{Q_s[\eta_1], Q_s[\eta_2]\} = 0$  $\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta] \neq 0$ 

• Central charge  $C[\theta, \eta] = \frac{1}{e^2} \oint d^2 y \sqrt{\gamma} \eta^A \partial_A \theta$ 

## Charge algebra

- Reduced phase space:  $G_Q[\theta] = 0 + Q[\theta]$ ,  $S_Q[\eta] = 0 + Q_s[\eta]$
- Algebra can be computed from  $\delta_{\theta_2} Q[\theta_1] = \{Q[\theta_1], Q[\theta_2]\}$
- General form of the charge algebra:  $\{Q[\theta_1], Q[\theta_2]\} = Q[[\theta_1, \theta_2]] + C[\theta_1, \theta_2]$
- In the electromagnetic theory

 $\{Q[\theta_1], Q[\theta_2]\} = 0$  $\{Q_s[\eta_1], Q_s[\eta_2]\} = 0$  $\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta] \neq 0$ 

- Central charge  $C[\theta, \eta] = \frac{1}{e^2} \oint d^2 y \sqrt{\gamma} \eta^A \partial_A \theta$
- Holographic conjugate pairs on S<sup>2</sup> [Donnay,Puhm, Strominger 2019]  $\{Q[\theta], Q_s[\eta]\} = C[\theta, \eta] \leftrightarrow \{q, p\} = 1$   $Q[\theta]$  - conformally soft photon mode  $Q_s[\eta]$  - Goldstone current

## Algebra in modes

• Laurent series

$$\psi(z, \bar{z}) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \frac{\psi_{nm}}{z^{n+h} \bar{z}^{m+\bar{h}}}$$

- The powers  $(h, ar{h})$  are related to the spin of the tensor  $\psi$
- Scalars  $\pi^r:(0,0)$
- Vectors:  $A_z$  : (1, 0),  $A_{\bar{z}}$  : (0, 1)

(PUCV)

## Algebra in modes

• Laurent series

$$\psi(z, \bar{z}) = \sum_{n=-\infty}^{+\infty} \sum_{m=-\infty}^{+\infty} \frac{\psi_{nm}}{z^{n+h} \bar{z}^{m+\bar{h}}}$$

- The powers  $(h, ar{h})$  are related to the spin of the tensor  $\psi$
- Scalars  $\pi^r:(0,0)$
- Vectors: $A_z$  : (1, 0),  $A_{\bar{z}}$  : (0, 1)
- Charges

 $Q[\theta] = \sum_{n,m} \theta_{nm} G_{nm} \in \mathbb{R}$  $Q_s[\eta] = \sum_{n,m} (\eta_{nm} \bar{S}_{nm} + \bar{\eta}_{nm} S_{nm}) \in \mathbb{R}$ 

Generators

$$G_{nm} = 4\pi^2 \pi_{1-n,1-m}$$

$$S_{nm} = -\frac{4\pi^2}{e^2} A_{-n,-m}$$

$$\bar{S}_{nm} = -\frac{4\pi^2}{e^2} \bar{A}_{-n,-m}$$

< D > < P > < P > < P >

• Algebra (non vanishing brackets only)

$$\{G_{nm}, S_{kl}\} = \kappa n \,\delta_{n+k,0} \delta_{m+l,0}$$
  
$$\{G_{nm}, \bar{S}_{kl}\} = \kappa m \,\delta_{n+k,0} \delta_{m+l,0}$$

• Level of the algebra:  $\kappa = \frac{4\pi^2}{e^2}$ 

• Algebra (non vanishing brackets only)

 $\{G_{nm}, S_{kl}\} = \kappa n \,\delta_{n+k,0} \delta_{m+l,0}$  $\{G_{nm}, \bar{S}_{kl}\} = \kappa m \,\delta_{n+k,0} \delta_{m+l,0}$ 

- Level of the algebra:  $\kappa = \frac{4\pi^2}{e^2}$
- Change of the basis:  $(G_{nm}, S_{nm}, \overline{S}_{nm}) \rightarrow (R_{nm}, J_{nm}, \overline{J}_{nm})$
- Generalization of Kac-Moody algebra

$$\{J_{nm}, J_{kl}\} = \kappa (n-m) \, \delta_{n+k,0} \delta_{m+l,0}$$
  
$$\{\bar{J}_{nm}, \bar{J}_{kl}\} = -\kappa (n-m) \, \delta_{n+k,0} \delta_{m+l,0}$$
  
$$\{R_{nm}, J_{kl}\} = \kappa n \, \delta_{n+k,0} \delta_{m+l,0}$$
  
$$\{R_{nm}, \bar{J}_{kl}\} = \kappa (n+m) \, \delta_{n+k,0} \delta_{m+l,0}$$

### Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras  $\{j_n, j_m\} = \kappa n \, \delta_{n+m,0}$ 

Currents  $j_n$ Levels $J_{n0}, J_{0n}$  $\kappa, -\kappa$  $\bar{J}_{n0}, \bar{J}_{0n}$  $-\kappa, \kappa$  $R_{n0}, R_{0n}$  $\kappa, \kappa$ 

- Non vanishing mixed brackets:  $\{R_{n0}, J_{m0}\}, \{R_{0n}, \overline{J}_{0m}\} \neq 0$
- Each KM algebra is naturally generated by current proportional to a holomorphic or anti-holomorphic functions.

イロト イポト イヨト イ

### Abelian Kac-Moody subalgebras

• We obtain six Abelian KM algebras  $\{j_n, j_m\} = \kappa n \, \delta_{n+m,0}$ 

Currents  $j_n$ Levels $J_{n0}, J_{0n}$  $\kappa, -\kappa$  $\bar{J}_{n0}, \bar{J}_{0n}$  $-\kappa, \kappa$  $R_{n0}, R_{0n}$  $\kappa, \kappa$ 

- Non vanishing mixed brackets:  $\{R_{n0}, J_{m0}\}, \{R_{0n}, \overline{J}_{0m}\} \neq 0$
- Each KM algebra is naturally generated by current proportional to a holomorphic or anti-holomorphic functions.
- $\{J_{00}, \overline{J}_{00}, R_{00}\}$  span the global Abelian algebra

イロト イポト イヨト イ

### Beyond U(1) – conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Witt algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]

イロト イポト イヨト イヨト

## Beyond $U(1)\mbox{--}$ conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Witt algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]
- We have several Witt algebras, not all of them independent
- Six Witt generators  $L_n = \frac{1}{2\kappa} \sum_k j_k j_{n-k}$
- Six Witt algebras  $\{L_n, L_m\} = (n-m) L_{n+m}$
- Quantization introduces a central extension.

イロト イポト イヨト イヨト

## Beyond $U(1)\mbox{--}$ conformal symmetry

- Conformal plane a realization of conformal symmetry described by Virasoro algebra
- Witt algebra obtained from KM algebra using the Sugawara construction [Sugawara 1967]
- We have several Witt algebras, not all of them independent
- Six Witt generators  $L_n = \frac{1}{2\kappa} \sum_k j_k j_{n-k}$
- Six Witt algebras  $\{L_n, L_m\} = (n-m) L_{n+m}$
- Quantization introduces a central extension.
- In progress: Relation to the global 4D Poincaré generators.

イロト 不得下 イヨト イヨト

## Extension to Yang-Mills theory

• Zero mode

 $\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$ 

with  $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$  and the bdy. condition  $V_A|_{r\to\infty} = V_{(0)A}(y)$ 

1

## Extension to Yang-Mills theory

• Zero mode

 $\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$ 

with  $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$  and the bdy. condition  $V_A|_{r\to\infty} = V_{(0)A}(y)$ 

Charges

 $Q[\theta] = -\oint \mathrm{d}^2 y \, heta^a \pi^r_a$ ,  $Q_s[\eta] = rac{1}{g^2} \oint \mathrm{d}^2 y \, \sqrt{\gamma} \, \eta^a_A A^A_a$ 

Local transformations

 $\begin{aligned} \delta_{\theta,\eta} A_u^a &= \theta_u^a \qquad \delta_{\theta,\eta} A_r^a = -D_r \theta^a \\ \delta_{\theta,\eta} A_A^a &= -D_A \theta^a + \epsilon \, \eta_A^a \end{aligned}$ 

▲ロト ▲圖ト ▲ヨト ▲ヨト ニヨー のへで

## Extension to Yang-Mills theory

Zero mode

 $\partial_r V_A = -[A_r, V_A] \quad \Rightarrow \quad V_A(x) = U^{-1} V_{(0)A}(y) U,$ 

with  $U = \exp\left(-\int_r^\infty \mathrm{d} r \, A_r\right)$  and the bdy. condition  $V_A|_{r\to\infty} = V_{(0)A}(y)$ 

Charges

 $Q[\theta] = -\oint \mathrm{d}^2 y \, \theta^a \pi^r_a$ ,  $Q_s[\eta] = rac{1}{g^2} \oint \mathrm{d}^2 y \, \sqrt{\gamma} \, \eta^a_A A^A_a$ 

• Local transformations

$$\begin{split} \delta_{\theta,\eta} A_u^a &= \theta_u^a \qquad \delta_{\theta,\eta} A_r^a = -D_r \theta^a \\ \delta_{\theta,\eta} A_A^a &= -D_A \theta^a + \epsilon \, \eta_A^a \end{split}$$

• Non-Abelian charge algebra

 $\{Q[\theta_1], Q[\theta_2]\} = Q[[\theta_1, \theta_2]]$  $\{Q[\theta], Q_s[\eta]\} = Q_s[[\theta, \eta]] + \frac{1}{g^2} \oint d^2 y \sqrt{\gamma} \eta_a^A \partial_A \theta^a$  $\{Q_s[\eta_1], Q_s[\eta_2]\} = 0 \longrightarrow Q_s \text{ is Abelian}$ 

## Yang-Mills theory

$$I[A] = -\frac{1}{4g^2} \int \mathrm{d}^4 x \sqrt{\mathfrak{g}} \, F^{\mu\nu}_a F^a_{\mu\nu}; \quad F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^a_{\ bc} A^b_\mu A^c_\nu$$

• Constraints

$$\pi_a^u \approx 0$$
,  $\chi_a^A \equiv \epsilon \, \pi_a^A - \frac{1}{g^2} \sqrt{\gamma} \gamma^{AB} F_{rB}^a \approx 0$ ,  $\chi_a \equiv D_i \pi_a^i \approx 0$ 

イロト イヨト イヨト イヨト

## Yang-Mills theory

$$I[A] = -\frac{1}{4g^2} \int \mathrm{d}^4 x \sqrt{\mathfrak{g}} \, F^{\mu\nu}_a F^a_{\mu\nu}; \quad F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + f^a_{\ bc} A^b_\mu A^c_\nu$$

• Constraints

$$\pi^{\rm u}_a\approx 0\,,\quad \chi^{\rm A}_a\equiv \epsilon\,\pi^{\rm A}_a-\tfrac{1}{g^2}\,\sqrt{\gamma}\gamma^{AB}F^a_{rB}\approx 0,\quad \chi_a\equiv D_i\pi^i_a\approx 0$$

• Constraint algebra

$$\begin{cases} \chi_a, \chi'_b \} &= f_{ab}^{\ c} \chi_c \, \delta^{(3)} \\ \\ \left\{ \chi_a, \chi'_b^A \right\} &= f_{ab}^{\ c} \, \chi_c^A \, \delta^{(3)} \\ \\ \left\{ \chi_a^A, \chi'_b^B \right\} &= \Omega^{AB}_{ab}(x, x')$$

• Non-Abelian symplectic matrix

$$\Omega_{ab}^{AB}(\mathbf{x},\mathbf{x}') = -\frac{2\epsilon}{g^2} \sqrt{\gamma} \gamma^{AB} \left( g_{ab} \partial_r + f_{abc} A_r^c \right) \delta^{(3)}$$

25 / 30

(PUCV)

Mode algebra

$$\begin{cases} G_{nm}^{a}, G_{kl}^{b} \\ G_{nm}^{a}, S_{kl}^{b} \end{cases} = f_{c}^{ab} G_{n+k,m+l}^{c}$$
$$\begin{cases} G_{nm}^{a}, S_{kl}^{b} \\ G_{nm}^{a}, \bar{S}_{kl}^{b} \end{cases} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$
$$\begin{cases} G_{nm}^{a}, \bar{S}_{kl}^{b} \\ G_{nm}^{a}, \bar{S}_{kl}^{b} \end{cases} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0}$$

- Level  $\kappa = \frac{4\pi^2}{g^2}$
- One can apply the Sugawara method again...

Mode algebra

$$\begin{cases} G_{nm}^{a}, G_{kl}^{b} \\ = f_{c}^{ab} G_{n+k,m+l}^{c} \\ \begin{cases} G_{nm}^{a}, S_{kl}^{b} \\ \end{cases} = f_{c}^{ab} S_{n+k,m+l}^{c} + \kappa n g^{ab} \delta_{n+k,0} \delta_{m+l,0} \\ \begin{cases} G_{nm}^{a}, \bar{S}_{kl}^{b} \\ \end{cases} = f_{c}^{ab} \bar{S}_{n+k,m+l}^{c} + \kappa m g^{ab} \delta_{n+k,0} \delta_{m+l,0} \end{cases}$$

- Level  $\kappa = \frac{4\pi^2}{g^2}$
- One can apply the Sugawara method again...
- We conclude that the symmetries at the asymptotic null boundary, described by KM algebras and Virasoro algebras, are general features of 4D gauge theories

### **Asymptotic conditions**

- Invariance of boundary conditions under Poincaré transformatons is not straighforward
- Hamiltonian treatment at spatial infinity needs additional **parity conditions** to ensure invariance under boosts.
- Electromagnetism [Henneaux, Troessaert 2018] ;
- Yang-Mills [Tanzi, Giulini 2020]
- Null-slices foliated standard b.c. in electromagnetism are invariant under Poincaré group. [Bunster, Gomberoff, Pérez 2018]
- We showed the Poincaré invariance in the non-Abelian case.

#### Poincaré transfromations

- We found several Kac-Moody algebras, but not all of them are related to the global Poincaré symmetry in 4D spacetime.
- We constructed a generator of 4D Poincaré transformations and its action at the light front, by writing the YM stress tensor in the canonical form,

$$T^{\mu}_{\nu} = \frac{1}{g^2} \left( F^{\mu\alpha}_{a} F^{a}_{\nu\alpha} - \frac{1}{4} \,\delta^{\mu}_{\nu} \,F^{\alpha\beta}_{a} F^{a}_{\alpha\beta} \right)$$

• We are working on showing its relation with the Virasoro generators.

Image: A match a ma
#### Poincaré transfromations

- We found several Kac-Moody algebras, but not all of them are related to the global Poincaré symmetry in 4D spacetime.
- We constructed a generator of 4D Poincaré transformations and its action at the light front, by writing the YM stress tensor in the canonical form,

$$T^{\mu}_{\nu} = \frac{1}{g^2} \left( F^{\mu\alpha}_{a} F^{a}_{\nu\alpha} - \frac{1}{4} \, \delta^{\mu}_{\nu} \, F^{\alpha\beta}_{a} F^{a}_{\alpha\beta} \right)$$

• We are working on showing its relation with the Virasoro generators.

### To be done

- Hamiltonian treatment of the gravitatonal action using the null foliation.
- Description of a holographic theory.
- Addition of the  $\theta$ -term in the action (Pontryagin topological invariant with the couplig  $\theta$ ), which will change the central charges.

29 / 30

(PUCV)

## THANK YOU!

30 / 30

## Acknowledgments

# THANK YOU!



## Acknowledgments

## FONDECYT Grant N° 1190533 Anillo Grant ANID/ACT210100 Holography and its applications to high energy physics, quantum gravity and condensed matter systems

FONDECYT Grant No. 1190533 Black holes and asymptotic symmetries

30 / 30

イロト イポト イヨト イヨト

(PUCV)