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@ Infrared structure of gauge theories

® Hamiltonian analysis of electromagnetism in the null foliation
® New symmetry generator; Beyond U(1)

O Extension to Yang-Mills theory

@ Discussion
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Infrared structure of gauge theories

IR region of theories with massless particles in asymptotically flat spaces
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Infrared structure of gauge theories

IR region of theories with massless particles in asymptotically flat spaces
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Infrared structure of gauge theories

Motivation

e Hamiltonian treatment of asymptotic symmetries

- BMS symmetry — infinite-dimensional asymptotic symmetry at the null
boundary of 4D asymptotically flat spacetimes

e Celestial holography
- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on
the celestial sphere

Light front EM
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Infrared structure of gauge theories

Motivation

e Hamiltonian treatment of asymptotic symmetries

- BMS symmetry — infinite-dimensional asymptotic symmetry at the null
boundary of 4D asymptotically flat spacetimes

e Celestial holography

- Duality between massless 4D asymptotically flat spacetimes and 2D CFT on
the celestial sphere

e Asymptotic symmetries in Electromagnetic and Yang-Mills theories

e 2D realization of soft symmetries in electromagnetism

e Extension to Yang-Mills
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Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (w — 0)

< Enhancement of symmetries at the boundary of flat spacetime (r — o)
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Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (w — 0)

< Enhancement of symmetries at the boundary of flat spacetime (r — o)

o Goldstone modes, do not leave the vacuum invariant: 3! [) = | + )
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Infrared structure of gauge theories

Vacuum degeneracy in gauge theories (w — 0)

< Enhancement of symmetries at the boundary of flat spacetime (r — o)

¢ Goldstone modes, do not leave the vacuum invariant: 3! [) = | + 1)
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Infrared structure of gauge theories

Penrose diagram of the Minkowski space

R 2
v
n
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Hamiltonian analysis of electromagnetism in the null

foliation

Null foliated reference frame
e Minkowski metric in D = 4 in the spherical coordinates (¢, r,yA)
My: ds? = —dt? +dr? + r2d0?
$%:  dO? = 74p(y) dy”dy®
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Hamiltonian analysis of electromagnetism in the null

foliation

Null foliated reference frame

e Minkowski metric in D = 4 in the spherical coordinates (¢, r,yA)
My : ds? = —dt? +dr? + r2d0?
§2:  dO? = y.p(y)dy~AdyP

e Time coordinate u=t—er, —-1<e<1

e=1 retarded time
e=0 proper time of a massive particle
€ = —1 advanced time
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Hamiltonian analysis of electromagnetism in the null

foliation

Null foliated reference frame

e Minkowski metric in D = 4 in the spherical coordinates (¢, r,yA)
My : ds? = —dt? +dr? + r2d0?
§2:  dO? = y.p(y)dy~AdyP

e Time coordinate u=t—er, —-1<e<1

e=1 retarded time
e=0 proper time of a massive particle
€ = —1 advanced time

e Coordinates on S2: stereographic projection 0, ¢) — yA = (z,2)

z:ei‘/’cotg, 2:e_i"’cot%
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Hamiltonian analysis of electromagnetism in the null

foliation

e Minkowski metric g,, in the coordinates x* = (u, ry?):

ds? = —du? — 2edudr + (1- 62) dr? + r2d0?

e S2 metric in complex coordinates

_( 0 7z _ 2 _
’YAB(,),ZZ 62> 722*(1+zz)2*\/7
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Hamiltonian analysis of electromagnetism in the null

foliation

e Electromagnetic action in the background g;,

1A = — 3% [d*x Vg FI'Fyy (Fuv = 9 Ay — 3y Ay)

e Canonical momenta ¥ = —é V8 Fur
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Hamiltonian analysis of electromagnetism in the null

foliation

e Electromagnetic action in the background g,

I[A] = —é [d*x /g F'Fyy (Fuw = 3, Ay — 3uAy)

e Canonical momenta ¥ = —é V8 FUr

In components: =0
2
o= 27 \ﬁFur
A :_é \ﬁr)/AB [(62_1)Fu3_€FrB}
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Hamiltonian analysis of electromagnetism in the null

foliation

e Electromagnetic action in the background g,

1A = — % [d*x Vg FI'Fyy (Fuv = 9 Ay — 3y Ay)

e Canonical momenta ¥ = —é V8 FUr

In components: =0
2
o= 27 \ﬁFur
A —é ﬁ’)/AB [(62 — l)FuB — €F,B}

7T

e The limit €2 — 1 is discontinuous
e The action in the light-cone (¢2 = 1) has an additional constraint

e Light-cone actions are first order in velocities
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Hamiltonian analysis of electromagnetism in the null

foliation

Bondi reference frame: €2 = 1

e Primary constraints |7t/ ~ 0, XA =en’ - é ﬁ’yABFrB ~0
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Hamiltonian analysis of electromagnetism in the null

foliation

Bondi reference frame: €2 = 1

e Primary constraints |7t/ ~ 0, XA =en’ - é ﬁ’yABFrB ~0

e Canonical Hamiltonian H¢ = 7'A, — L

2(7.(r)

22y

4 SRt | VT FABE, s A

He = 27 4e2r?
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Hamiltonian analysis of electromagnetism in the null

foliation

Bondi reference frame: €2 = 1

e Primary constraints |7t ~ 0, XA =en’ - é ﬁ’yABFrB ~0

e Canonical Hamiltonian H¢ = 7'A, — L

2(7.(r)

22y

e Total Hamiltonian

4 It | VT FABE, s A

He = 27 4e2r?

Hr = HC +AU7TU+)\AXA

Ay(x), Aa(x) = Hamiltonian multipliers
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Hamiltonian analysis of electromagnetism in the null

foliation

Bondi reference frame: €2 = 1

e Primary constraints |7t ~ 0, XA =en’ - é ﬁ’yABFrB ~0

e Canonical Hamiltonian H¢ = 7'A, — L

2 r
r(ZT(\f) _|_e27r\?§ +4;2Fr2 FABFAB—A an.

e Total Hamiltonian

He =

Hr = HC + Ayt —|—)\AXA
Ay(x), Aa(x) = Hamiltonian multipliers

¢ Canonical Poisson brackets {Au(x), (<)} = oy 63 (x —x')

{@(), Hr} = [ &X' {@(x), H7(x')}

Q

e Evolution  ®(x)
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Hamiltonian analysis of electromagnetism in the null

foliation

Comment
e We always have two different Hamiltonians € = +1.
e The future cone € = +1 and the past cone € = —1 are causally disconnected.

e Common boundary 9 is located at the spatial infinity.
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Hamiltonian analysis of electromagnetism in the null

foliation

Comment

e We always have two different Hamiltonians € = +1.

The future cone € = +1 and the past cone € = —1 are causally disconnected.

Common boundary /9 is located at the spatial infinity.

A radial wave located at (u, r) propagates along v = t 4 er = const.

In absence of massive particles, the future lightlike infinity
Jt=J%(t—r,y) and the past lightlike infinity 7~ = 7 (t+r,y)
behave as Cauchy surfaces .
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Hamiltonian analysis of electromagnetism in the null

foliation

Symplectic matrix

{XA(X),XB(X/)} — QAB(X,X/) = _%ﬂ,YABar(s(?))
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Hamiltonian analysis of electromagnetism in the null

foliation

Symplectic matrix

{XA(X),XB(X/)} — QAB(X,X/) = _%ﬂ,YABar(SG)

o If OAB _invertible: x* are first class (generate symmetries)

o If OAB - not invertible: x* are second class (eliminate redundant fields)
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Hamiltonian analysis of electromagnetism in the null

foliation

Symplectic matrix

{XA(X),XB(X/)} — QAB(X,X/) = _%ﬂ,YABar(SG)

o If OAB _invertible: x* are first class (generate symmetries)

o If OB - not invertible: x# are second class (eliminate redundant fields)
One possibility

e OAB s invertible because YA is invertible = x” are second class

e Reduced phase space XA =0
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Hamiltonian analysis of electromagnetism in the null

foliation

Symplectic matrix

{XA(X),XB(X/)} — QAB(X,X/) = _%ﬂ,YABar(SG)

o If OAB _invertible: x* are first class (generate symmetries)

o If OAB - not invertible: x* are second class (eliminate redundant fields)
One possibility

e OAB s invertible because YA is invertible = x” are second class

e Reduced phase space XA =0
Other possibility

e 048 s invertible, but its inverse is not unique

- OAB is infinite-dimensional matrix and it has zero modes
JEB3XOABV] = -2 /49 4B0, Vg =0 = Vg = Vg(y)
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Hamiltonian analysis of electromagnetism in the null

foliation

Symplectic matrix

{XA(X)VXB(X/)} — OB (x,x') = _gﬁ,YABard(S)

o If OAB _invertible: x* are first class (generate symmetries)

o If OAB - not invertible: x# are second class (eliminate redundant fields)
One possibility

e OAB s invertible because 'yAB is invertible = XA are second class

e Reduced phase space XA =0
Other possibility

o OAB is invertible, but its inverse is not unique

e OAB is infinite-dimensional matrix and it has zero modes

= )((Ao)(y) is first class constraint (r-independent part of the constraint)
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Hamiltonian analysis of electromagnetism in the null

foliation

Consistency conditions
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Hamiltonian analysis of electromagnetism in the null

foliation

Consistency conditions

e Conservation of constraints during their evolution
=0 = x=20;7 ~0 (differential Gauss law)

=0 = [dXQMAp = [d3K {H "}
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Hamiltonian analysis of electromagnetism in the null

foliation

Consistency conditions

e Conservation of constraints during their evolution
=0 = x=0,7 ~0 (differential Gauss law)

=0 = [d3XQMAp = [dB3K {H ")
e The multiplier A4 is not fully determined

r

dda = — 507t — 3 VO Fap + 55 98 ()
Aa=Aa+Aa(y)
e A free function A4(y) is due to the zero modes of QA8

e A, - determined part of Ay
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = a,-n".
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = 8,-7ri .

Class of the constraints
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = 8,-7ri .

Class of the constraints

o 7TY — first class, A, behaves as a multiplier in the Hamiltonian
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = 8,-7ri .

Class of the constraints

o 7TY — first class, A, behaves as a multiplier in the Hamiltonian

e x — first class, differential Gauss law, 77/ = \ﬁEi
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = a,-n".

Class of the constraints

o 7TY — first class, A, behaves as a multiplier in the Hamiltonian

e x — first class, differential Gauss law, 77/ = \ﬁEi

. Xé)) — first class, r-independent part of the constraint
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Hamiltonian analysis of electromagnetism in the null

foliation

Summary of the constraints

Primary constraints: v, )(A = \f’YABF

Secondary constraint: x = a,-n".

Class of the constraints

o 7TY — first class, A, behaves as a multiplier in the Hamiltonian

x — first class, differential Gauss law, 77/ = \ﬁEi

)(A) — first class, r-independent part of the constraint

(
. X(A,,) (n > 1) — second class, coefficients of the Taylor expansion in %

o

We have to expand all the fields asymptotically in the vicinity of the
boundary r = const — 0.
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Hamiltonian analysis of electromagnetism in the

foliation

Standard asymptotic conditions of the fields
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Hamiltonian analysis of electromagnetism in the

foliation

Standard asymptotic conditions of the fields

O(r
T =0, o =0("0), A :O(%)

Boundary fields: A)s = Aalr—, n{o) = 7"/ —oo

Extended Hamiltonian He =Hce +Aut’ + AaxA + A0

¢ Hamilton’s equations

Av =y, A :rzf A, Ag :ef/%AfaA)\Jre/\A

A=0, A =GV, qA = - (L VeFAB 10,00

Fall-off of the multipliers
A=0@),  M=0(")., A=03)
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A new symmetry generator

SUMMARY

15t class constr. Multipliers Parameters Generators Charges

mt, x =07 Aus A 0, 6 G[o] Q[
x(}n An(9) 1a() S[n] Qs 1]
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A new symmetry generator

SUMMARY

15t class constr. Multipliers Parameters Generators Charges

ml, x = o7 Aus A 0,, 6 G[o] Q[
x(}n An(9) 1a() S[n] Qs 1]

e Smeared generators
Glo] = [d3x (69;7' +6,m") U(1) symmetry
Syl = [ d3x UAXA asymptotic symmetry
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A new symmetry generator

SUMMARY

15t class constr. Multipliers Parameters Generators Charges

ml, x = o7 Aus A 0,, 6 G[o] Q[
x(}n An(9) 1a() S[n] Qs 1]

Smeared generators
Glo] = [d3x (69;7' +6,m") U(1) symmetry
Syl = [ d3x UAXA asymptotic symmetry

New symmetry generator
- x* contains Xf\o) (first class) and Xf\n) (n>1) (second class)

The basis {r"|n € Z} is not complete, x”* — X/(An) not invertible

- We have to ensure that X(An) (n > 1) do not contribute to Jy

1 4 tends fast to (o)A We can take 17, = W(O)A(Y)
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A new symmetry generator

e Transformation laws of the fields 6y = { , G[0]} 0, ={ ,S[y]}

SpAy = 0,04 —0;00),, ;A =en,d,
Sett =0, Syt = L 88y Vant

Olivera Midkovi¢ - February 2023 ) Light front EM



A new symmetry generator

e Transformation laws of the fields 6y = { , G[0]} 0, ={ ,S[y]}

SpAy = 0,04 —09;00),,  S,A, =en,d
Sertt =0, Syt = L 88y Vant

% 0 : Standard U(1) gauge transformations 69A, = —0d,0

% 717 : Act only on the boundary fields (Goldstone modes)
A
SnA) = €1Ma0) 5,77'((0 e2 NoAY YV
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A new symmetry generator

e Transformation laws of the fields 69 = { , G[0]}, 0, = { ,S[y]}

SpAy =0,04 —0i00),,  SyA. =€nyo
det” =0, oy = G 8/ Var

% 0 : Standard U(1) gauge transformations 69A, = —0d,0
% 717 : Act only on the boundary fields (Goldstone modes)
SyAy = €1adu, Oymtly) = 2 /T Var
e Transformation law of the multipliers
Au=0,, A=0+01), dAs=eq+0Od)
¢ Fall-off of the local parameters
b,=00d), =00, y*=0()

e Improper transformations: 6 q), 17(A0)
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A new symmetry generator

Improved generators and charges
¢ Improved generators
Gol0] = G[8]+ Q[0] (Q[P] = surface term)
Solnl =S+ Qsln] (Qs[0] = surface term)
¢ Differentiability

5Gqlo] =[x (532 oA, + il o)

sSala) P (5o, + 53l
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A new symmetry generator

Improved generators and charges
¢ Improved generators
Gol0] = G[8]+ Q[0] (Q[P] = surface term)
Solnl =S+ Qsln] (Qs[0] = surface term)
¢ Differentiability

5Golo] = [ d3x (S5 sa, + Sl o)

orth

sSqlnl = J &x (S oA, + 22 ot
e Charges (field-independent IocaI parameters)

Qo] =-¢d’yen

Qlyl = Z §dy yrntAa

- The integral is over the two-sphere at the infinity.

- There is an infinite number of global charges, corresponding to the spherical
harmonics mode expansion (or Laurent expansion) of the local parameters.
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WHAT'S GOING ON?

A
»
Q
(o)
qé =
o usual SAA ”LA
® m°d°i | global
: zero mode
,‘ commmm— ---19.'.2\\

[ALEXANDROV, SPEZIALE 2014]

Evolution Is
Insensitive to the
dynamics that is
not prescribed on

the initial data
surface.

Presentation of H. Gonzalez, NordGrav @ ICEN, Iquique, Chile, January 2023



A new symmetry generator

Charge algebra

e Reduced phase space: Gg[0] =0+ Q[f], Sgln] = 0+ Qs[y]

Algebra can be computed from 6y, Q[61] = {Q[f1], Q[f2]}
General form of the charge algebra: {Q[01], Q[02]} = Q[[01,62]] + C[61, 6]

In the electromagnetic theory

{Q[o1],
1Qs[n1], Qsn,]}
{Ql]. @s

Q62]}

7]}

-0
=0
=Clo,y] #0

Central charge C[0,7] =

P ffdQY \/>77A8A9
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A new symmetry generator

Charge algebra

Reduced phase space: Gg[0] = 0+ Q[8], So[n7] = 0+ Qs[y]

Algebra can be computed from 6y, Q[61] = {Q[f1], Q[f2]}

General form of the charge algebra: {Q[01], Q[02]} = Q[[01,62]] + C[61, 6]
In the electromagnetic theory

{Q[61]. Q[62]} =0

{Qs[n1]. Qsn,]} =0

{QO]. Qs[y]} = ClB.7] #0
Central charge C[0,7] = & L §d%y /1”90

Holographic conjugate pairs on 52
{Ql6]. Qs[yl} = Cl6.7] < {a.p}=1
Q[0] — conformally soft photon mode

Qs[n7] — Goldstone current
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A new symmetry generator

Algebra in modes

e Laurent series

_ —+oo —+o0 l/)
P(z,z)= ¥ D Fathymih
n=—00 m=—00

e The powers (h, h) are related to the spin of the tensor

- Scalars " : (0,0)

- Vectors:A; : (1,0), Az : (0,1)
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A new symmetry generator

Algebra in modes

e Laurent series

_ —+oo —+o0 l/)
Pz2)= L Y e

n=—oco m=—

The powers (h, h) are related to the spin of the tensor ¢
Scalars 71" : (0,0)
Vectors:A; : (1,0), Az : (0,1)

e Charges

Q] =XnmbmmGom € R

Qs[1] =X m (1pmSnm + M pmSnm) € R
e Generators

Gom =472 M1 p1-m

L

Som = —EA . m
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A new symmetry generator

e Algebra (non vanishing brackets only)

{Gnmv Skl} = Kn5n+k,0(5m+l,0

{Gom. Sk} =xméy ik 00mrio

2
e Level of the algebra: x = 4Z°
e
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A new symmetry generator

e Algebra (non vanishing brackets only)

{Gnmvsk/}
{Gnmnskl}

=KnN3p1k,00m+1,0

=Kkmduik,00m41,0

e Level of the algebra: x =

_ 42
ez

e Change of the basis: (Gom, Snm, Som) — (Ram, Jnm, Inm)

¢ Generalization of Kac-Moody algebra

{Jnm. It}
{Jnm. It}
{Rom Jur ¥
{Rom, Jir}
{Ram. Ria }

Olivera Midkovi¢ - February 2023

=& (n—m) Snik,00m+1,0
= —x(n—m) Snyk00m+1,0
=Kn0n4k,00m+1,0
=KMOpik00m+1,0

=Kk (n+m)bnik00me10

Light front EM



A new symmetry generator

Abelian Kac-Moody subalgebras

¢ We obtain six Abelian KM algebras {j, jm} = «nd,+mo

Currents j, Levels
JnOv JOn K, —K
Jno. Jon —K, K

Rno, ROn K, K
e Non vanishing mixed brackets: {R,0, Jmo}, {Ron, Jom} # 0

e Each KM algebra is naturally generated by current proportional to a
holomorphic or anti-holomorphic functions.
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A new symmetry generator

Abelian Kac-Moody subalgebras

¢ We obtain six Abelian KM algebras {j, jm} = «nd,+mo

Currents j, Levels

JI‘IOVJOI'I K, —K
Jro. Jon —K, K
Rno, ROn K, K

e Non vanishing mixed brackets: {R,0, Jmo}, {Ron, Jom} # 0

e Each KM algebra is naturally generated by current proportional to a
holomorphic or anti-holomorphic functions.

e {Joo, Joo, Roo } span the global Abelian algebra
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A new symmetry generator

Beyond U(1) — conformal symmetry

e Conformal plane — a realization of conformal symmetry described by Virasoro
algebra

e Witt algebra — obtained from KM algebra using the Sugawara construction
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A new symmetry generator

Beyond U(1) — conformal symmetry

e Conformal plane — a realization of conformal symmetry described by Virasoro
algebra

Witt algebra — obtained from KM algebra using the Sugawara construction

We have several Witt algebras, not all of them independent

Six Witt generators L, = 21—;{ Y Jkdn—k
k

Six Witt algebras {Ln,Lm} =(n—m) Lpym

Quantization introduces a central extension.
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A new symmetry generator

Beyond U(1) — conformal symmetry

e Conformal plane — a realization of conformal symmetry described by Virasoro
algebra

e Witt algebra — obtained from KM algebra using the Sugawara construction

e We have several Witt algebras, not all of them independent

e Six Witt generators L, = 21—;{ Y Jkdn—k
k

e Six Witt algebras  {L, L} =(n—m) Loim
e Quantization introduces a central extension.

e In progress: Relation to the global 4D Poincaré generators.
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Extension to Yang-Mills theory

e Zero mode
IVa=—[A VAl = Valx)=UValy)U,
with U =exp (— [~ dr A;) and the bdy. condition V4, —co = Vioya(y)
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Extension to Yang-Mills theory

e Zero mode

I Va=—[ArVa] = Valx)=UVgalnU,

with U = exp (— [ dr A;) and the bdy. condition V4|, ~co = V(g)a(¥)
e Charges

Qo] = — §d2y o', Qslnl = & § d2y rniAL

e Local transformations
56,17’4231 = 9‘3 (59,17’4? = _Drea

59',7/4/34 = 7DA93 + Gﬂi
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Extension to Yang-Mills theory

e Zero mode

IVa=—[A VAl = Valx)=UValy)U,

with U =exp (— [~ dr A;) and the bdy. condition V4, —co = Vioya(y)
e Charges

Qo] = — § 2y 0°ml,  Qsln] = 2 § d?y T HRAS

e Local transformations
56,17’4231 = 9‘3 (59,17’4? = _Drea

59',7/4/34 = 7DA93 +€172
e Non-Abelian charge algebra
{Q[61]. Q[62]} = Q[[61,62]]
{QIO]. Qs[n]} = Qs[l6.yl] + 5 § &%y /71750467
{Qslny) Qslnply =0 — . ' Abelan
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Extension to Yang-Mills theory

Yang-Mills theory

IA] = g0 [ d*xVE YRR FRy = 0uA] — 0uA% + F3 ARAS

e Constraints

Tl ~0, X?;ené‘féﬁyABFfB%O, XaED,-rcgzO
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Extension to Yang-Mills theory

Yang-Mills theory

1A = =g [ A VaFY Rl iy = 0uA7 — 3uA% + £, ADAS

e Constraints

~ A — A 1 AB ~ = i~
my~0, Xazenafgﬁ\ﬁ')’ FraBNOv Xa:DiTCfaN

e Constraint algebra

¢ Non-Abelian symplectic matrix

Q?[;B (Xv X/) = 7% \MPYAB (gab al’ + fabc Af) 5(3)
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Extension to Yang-Mills theory

e Mode algebra

a b __ fab rc
{Gnm Gk/} =G ks
Gim St ¢ =f%b +xng?5, 4 00
nm» k n+k,m+l ng n+k,09m+/,0
{ nm: } = £ n+k ml T ngab5n+k,0‘sm+/,0
2
e Level K= “g%

e One can apply the Sugawara method again...
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Extension to Yang-Mills theory

e Mode algebra

{Gﬁm' Gl?/} = £ ok m

{Gam SB} = LSS, it + K180 00m 10

{Gﬁmv 5/?/} = 25 o mar T Kmg8 0 00m 0
e Level K= “g%z

e One can apply the Sugawara method again...

o We conclude that the symmetries at the asymptotic null boundary, described
by KM algebras and Virasoro algebras, are general features of 4D gauge
theories
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Discussion

Asymptotic conditions

e Invariance of boundary conditions under Poincaré transformatons is not
straighforward

e Hamiltonian treatment at spatial infinity needs additional parity conditions
to ensure invariance under boosts.

- Electromagnetism :
- Yang-Mills

o Null-slices foliated standard b.c. in electromagnetism are invariant under
Poincaré group.

e We showed the Poincaré invariance in the non-Abelian case.
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Discussion

Poincaré transfromations

e We found several Kac-Moody algebras, but not all of them are related to the
global Poincaré symmetry in 4D spacetime.

e We constructed a generator of 4D Poincaré transformations and its action at
the light front, by writing the YM stress tensor in the canonical form,

T = L (FI"F — ol FPF2,)

e \We are working on showing its relation with the Virasoro generators.
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Discussion

Poincaré transfromations

e We found several Kac-Moody algebras, but not all of them are related to the
global Poincaré symmetry in 4D spacetime.

e We constructed a generator of 4D Poincaré transformations and its action at
the light front, by writing the YM stress tensor in the canonical form,

T = L (FI"F — ol FPF2,)
e \We are working on showing its relation with the Virasoro generators.
To be done

e Hamiltonian treatment of the gravitatonal action using the null foliation.
e Description of a holographic theory.

o Addition of the 6-term in the action (Pontryagin topological invariant with
the couplig 6), which will change the central charges.
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