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Quick overview of Poincare gauge theory: fields

Basic variables:

Tetrad i spin connection Torsion and curvature

bi = biµdx
µ T i = dbi + ωi

k ∧ bk

ωij = ωij
µdx

µ Rij = dωij + ωi
k ∧ ωkj
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Quick overview of Poincare gauge theory: gravitation
Lagrangian and covariant momenta

General form of gravitational Lagrangian in PGT

LG = −∗(a0R+2Λ)+T i
3∑

n=1

∗(an
(n)Ti)+

1

2
Rij

6∑
n=1

∗(bn
(n)Rij)

From the gravitational Lagrangian, the covariant momenta are
calculated as:

Hi =
∂LG

∂T i
Hij =

∂LG

∂Rij

Corresponding energy-momentum and spin currents:

Ei =
∂LG

∂bi
Eij =

∂LG

∂ωij
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Quick overview of Poincare gauge theory: field equations

From the previous, the fields equations of PGT can be written
in compact form

∇Hi + Ei = 0 ∇Hij + Eij = 0
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Entropy of black holes in Poincare gauge theory: canonical
generator

The base of Hamiltonian approach to calculating entropy is
based on the existence of canonical gauge generator G.

G is given by an integral on a spacelike slice Σ, G acts on
phase-space variables via Poisson bracket.

G must have well defined functional derivatives, which is
assured by adding surface correction terms Γ.

The improved generator G̃ = G+ Γ is regular.
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Entropy of black holes in Poincare gauge theory: variation
of the surface terms

In the case of a black hole, the boundary surface has two
distinct parts - one at infinity and one on the horizon

Correspondingly the correction term Γ has two parts:
Γ = Γ∞ + ΓH

δΓ∞ =

∮
S∞

δB(ξ) δΓH =

∮
SH

δB(ξ)

δB(ξ) = (ξ⌟bi)Hi + δbi(ξ⌟Hi) +
1

2
(ξ⌟ωij)δHij +

1

2
δωij(ξ⌟Hij)
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Entropy of black holes in Poincare gauge theory: conserved
charges

Γ∞ are interpreted as asymptotic charges, if they’re solutions
of the before mentioned variational equations

ΓH is interpreted as entropy - canonical charge on the horizon

Regularity condition of the generator implies:

δG+ δΓ = R =⇒ δG = −δΓ +R

So the generator is regular iff δΓ = δΓ∞ − δΓH = 0 - first law
of black hole mechanics
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Calculation of entropy in Hamiltonian approach to PG

We therefore have the algorithm to find an entropy of a black
hole solution in PG:

We impose asymptotic conditions on the solution at infinity
We calculate the variation of the surface term Γ∞
We interpret ΓH = TδS with T being Hawking temperature
We finally find entropy using the first law of black hole
mechanics

However, certain types of black holes - extremal black holes,
have the property of T = 0, so the former approach cannot be
used for them
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Extremal black holes - definition

Extremal black hole - black hole for which the
parameters(mass, angular momentum and charge) are related
in such a way that the inner and outer horizons coincide. It’s
a black hole of minimal mass such that it is compatible with
its angular momentum and charge - we don’t have naked
singularity.

Killing horizon - a null hypersurface on which a Killing vector
ξ has norm zero - it’s normal to it

On the Killing horizon, ∂µξ
2 = −2κξµ holds - κ is a scalar

called surface gravity

Another definition of an extremal black hole: κ = 0 on the
horizon
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The notion of a near horizon geometry

In the neighborhood of the horizon of an extremal black hole,
one can introduce null coordinates (v, r, xa), and the metric
will look like:

ds2 = r2F (r, x)dv2+2dvdr+2rha(r, x)dvdx
a+γab(x)dx

adxb

Here ∂
∂v is the Killing vector, horizon is at r = 0 F , ha and

γab are continuous functions of r.

Introduce the near-horizon limit:

v → v/ϵ r → ϵr

with ϵ −→ 0

Near-horizon metric:

ds2 = r2F (0, x)dv2+2dvdr+2rha(0, x)dvdx
a+γab(x)dx

adxb
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Near horizon extremal Kerr black hole

Kerr metric:

ds2 = N2(dt+a sin2 θdϕ)2−dr2

N2
−ρ2dθ2−sin2 θ

ρ2
[
adt+(r2+a2)dϕ

]2
with:

N2 =
∆

ρ2
∆ = r2 + a2 − 2mr ρ2 = r2 + a2 cos2 θ

Extremal case is obtained for m = a. Horizon is given by
r+ = a.
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Near horizon extremal Kerr black hole

Near-horizon transformation:

t̃ =
εt

2r+
y =

εr+
r − r+

φ = ϕ+Ω+t

where ε → 0, and Ω+ = 1
2a is the angular velocity of the horizon.

New metric - NHEK:

ds2 = r2+(1+cos2 θ)

[
dt̃2

y2
− dy2

y2
− dθ2 −

(
2 sin θ

1 + cos2 θ

)2(
dφ− dt̃

y

)2
]
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Properties of NHEK

ds2 = r2+(1+cos2 θ)

[
dt̃2

y2
− dy2

y2
− dθ2 −

(
2 sin θ

1 + cos2 θ

)2(
dφ− dt̃

y

)2
]

NHEK is not equivalent to the Kerr solution, it’s a distinct
solution. It is not asymptotically flat.

It has the symmetry of an enhanced SL(2,R)× U(1).

Hypersurfaces of constant θ are warped AdS3 spaces.
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Asymptotic symmetry of NHEK

Asymptotic boundary conditions were found by(Guica(2008)):

δgµν =


O(y−2) O(1) O(y) O(1)

O(y−1) O(1) O(y−1)
O(y) O(y)

O(1)


Asymptotic Killing vector:

ξ t̃ = T +O(y3) ξy = y∂φϵ(φ) +O(y2)

ξθ = O(y) ξφ = ϵ(φ) +O(y2)

Asymptotic symmetry group generated by the asymptotic
Killing vectors has a conformal subgroup.

ξ = yϵ′(φ)∂y + ϵ(φ)∂φ
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Kerr solution with torsion

It turns out that in general the Kerr solution with torsion in
PG is gauge equivalent to teleparallel solution.
It suffices to consider limiting cases of Riemannian PG and
the teleparallel equivalent of GR.

We find tetrad fields:

b0 =
r+

√
1 + cos θ

y
dt̃ b1 = −r+

√
1 + cos θ

y
dy

b2 = r+
√

1 + cos2 θdθ b3 =
2 sin θ√
1 + cos2 θ

r+

(
dφ− dt̃

y

)
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Entropy of extremal Kerr black hole - boundary conditions

Boundary conditions for the tetrad were obtained considering
the metric boundary conditions derived previously

biµ =


O(y−1) O(y) O(y2) O(y)
O(y) b̄1y +O(1) O(y) O(1)

O(y) O(1) b̄2θ +O(y) O(y)

b̄3
t̃
f(φ) +O(1) O(y) O(y2)

b̄3φ
f(φ) +O(y)


Lorentz parameters that are obtained from the invariance of
tetrads are all asymptotically vanishing.
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Using the Hamiltonian method on NHEK

The method of Brown and Henneaux is used. We’re looking
for the central charge in the algebra of improved generators:

{G̃(ϵ1), G̃(ϵ2)} = G̃(ϵ3) + C

It can be simplified to an expression containing just the
boundary corrections.

{G̃(ϵ1), G̃(ϵ2)} ≈ δ0(ϵ1)ΓH(ϵ2) ≈ ΓH(ϵ3) + C

Furthermore, since C is a constant functional, it can be
computed by performing variation on the background
configuration.

Danilo Rakonjac Entropy of extremal black holes in Poincare gauge theory: the case of rotating black hole



Entropy of black holes in PGT
Near horizon geometry

Calculation of entropy for NHEK in PG
Comments about other solutions

Entropy of NHEK via Cardy formula

Performing the variation of the boundary term at the
asymptotic boundary(y = 0) we find:

δB(ξ) = 8a0r
2
+

∫ 2π

0
(ϵ1ϵ

′
2−ϵ2ϵ

′
1)dφ−4a0r

2
+

∫ 2pi

0
(ϵ′1ϵ

′′
2−ϵ′2ϵ

′′
1)dφ

The second term is identified as the central charge. Expressed
in Fourier modes, we have a Virasoro algebra:

{Ln, Lm} = −i(n−m)Lm+n − c

12
in3δn,−m

We finally obtain entropy from Cardy formula:

S =

√
c

6

(
L0 −

c

24

)
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Result for entropy of NHEK

The entropy obtained is S = 2πr2+ which a smooth extremal
limit of the non-extremal case.
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The black holes solution that remain to be analyzed

AdS extensions - NHEK-AdS

Charged solutions - extremal Reissner-Nordstrom

RN-like solutions

Charged AdS extensions - Kerr-Newman-AdS
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