Higher Structures \& Geometry

FOR GAUGE SYSTEMS

Thanasis Chatzistavrakidis

5 April 2024 @ MAJA FEST

HAPPY BIRTHDAY MAJA!!!

HAPPY BIRTHDAY MAJA!!!

HAPPY BIRThDAY MAJA!!!

HAPPY BIRThDAY MAJA！！！

HAPPY BIRThDAY MAJA！！！

WHY \& WHAT FOR?

* Quantization of gauge systems $\rightsquigarrow B V / B R S T$ formalism
* Field theories with p-form fields \rightsquigarrow Higher Gauge Theories
* Generalizations of Global Symmetries - Topological Operators
* Generalized geometric models for Gravity \& (Quantum?) Spacetime

BV/BRST

Three general possible features for gauge systems:

* Gauge algebra closes only on-shell
* Field-dependent structure functions
* Reducibility of gauge generators

BV/BRST

Three general possible features for gauge systems:

* Gauge algebra closes only on-shell
* Field-dependent structure functions
* Reducibility of gauge generators

For Yang-Mills-like models of ordinary gauge fields (e.g. SM), none of these applies ...
needless to say, still important classically (conservation laws, interactions, gauge-fix) and quantumly (anomalies, renormalization)
Initially developed for rather complicated theories.
What is the simplest theory with all these features?

Dilaton Gravity (2D)

* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model.

Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

Dilaton Gravity (2D)

* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model.

Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

$$
\mathrm{S}_{\mathrm{PSM}}=\int A_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \Pi^{\mu \nu}(X) A_{\mu} \wedge A_{\nu} .
$$

Dilaton Gravity (2D)

* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model.

Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

$$
S_{\mathrm{PSM}}=\int A_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \Pi^{\mu \nu}(X) A_{\mu} \wedge A_{\nu} .
$$

* Almost standard gauge theory, but "non-linear"; the gauge symmetries are

$$
\delta X^{\mu}=\Pi^{\mu \nu}(X) \epsilon_{\mu} \quad \text { and } \quad \delta A_{\mu}=\mathrm{d} \epsilon_{\mu}+\partial_{\mu} \Pi^{\nu \rho}(X) A_{\nu} \epsilon_{\rho} .
$$

* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model.

Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

$$
\mathrm{S}_{\mathrm{PSM}}=\int A_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \Pi^{\mu \nu}(X) A_{\mu} \wedge A_{\nu} .
$$

* Almost standard gauge theory, but "non-linear"; the gauge symmetries are

$$
\delta X^{\mu}=\Pi^{\mu \nu}(X) \epsilon_{\mu} \quad \text { and } \quad \delta A_{\mu}=\mathrm{d} \epsilon_{\mu}+\partial_{\mu} \Pi^{\nu \rho}(X) A_{\nu} \epsilon_{\rho} .
$$

* The gauge algebra contains functions and (generically) closes only on-shell

$$
\left[\delta_{1}, \delta_{2}\right] A_{\mu}=\delta_{12} A_{\mu}+\partial_{\mu} \partial_{\nu} \Pi^{\rho \sigma}(X) \epsilon_{\rho} \epsilon_{\sigma}\left(\mathrm{d} X^{\nu}+\Pi^{\nu \kappa} A_{\kappa}\right), \quad \epsilon_{12 \mu}=\partial_{\mu} \Pi^{\nu \rho}(X) \epsilon_{1 \nu} \epsilon_{2 \rho} .
$$

* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model. Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

$$
S_{\mathrm{PSM}}=\int A_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \Pi^{\mu \nu}(X) A_{\mu} \wedge A_{\nu} .
$$

* Almost standard gauge theory, but "non-linear"; the gauge symmetries are

$$
\delta X^{\mu}=\Pi^{\mu \nu}(X) \epsilon_{\mu} \quad \text { and } \quad \delta A_{\mu}=\mathrm{d} \epsilon_{\mu}+\partial_{\mu} \Pi^{\nu \rho}(X) A_{\nu} \epsilon_{\rho}
$$

* The gauge algebra contains functions and (generically) closes only on-shell

$$
\left[\delta_{1}, \delta_{2}\right] A_{\mu}=\delta_{12} A_{\mu}+\partial_{\mu} \partial_{\nu} \Pi^{\rho \sigma}(X) \epsilon_{\rho} \epsilon_{\sigma}\left(\mathrm{d} X^{\nu}+\Pi^{\nu \kappa} A_{\kappa}\right), \quad \epsilon_{12 \mu}=\partial_{\mu} \Pi^{\nu \rho}(X) \epsilon_{1 \nu} \epsilon_{2 \rho} .
$$

* 1st-class constrained Hamiltonian system.

Cf. 4D GR: functions in constraint algebra Blohmann, Barbosa Fernandes, Weinstein '10 nicely explained in Bojowald's book

* Not to forget: Kontsevich *-product is computed by a PSM ∂ correlator Cattaneo, Felder'99
* Models of 2D gravity (JT, R^{2}, \ldots) elegantly unify into the Poisson sigma model. Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging

$$
\mathrm{S}_{\mathrm{PSM}}=\int A_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \Pi^{\mu \nu}(X) A_{\mu} \wedge A_{\nu} .
$$

* Almost standard gauge theory, but "non-linear"; the gauge symmetries are

$$
\delta X^{\mu}=\Pi^{\mu \nu}(X) \epsilon_{\mu} \quad \text { and } \quad \delta A_{\mu}=\mathrm{d} \epsilon_{\mu}+\partial_{\mu} \Pi^{\nu \rho}(X) A_{\nu} \epsilon_{\rho}
$$

* The gauge algebra contains functions and (generically) closes only on-shell

$$
\left[\delta_{1}, \delta_{2}\right] A_{\mu}=\delta_{12} A_{\mu}+\partial_{\mu} \partial_{\nu} \Pi^{\rho \sigma}(X) \epsilon_{\rho} \epsilon_{\sigma}\left(\mathrm{d} X^{\nu}+\Pi^{\nu \kappa} A_{\kappa}\right), \quad \epsilon_{12 \mu}=\partial_{\mu} \Pi^{\nu \rho}(X) \epsilon_{1 \nu} \epsilon_{2 \rho} .
$$

* 1st-class constrained Hamiltonian system.

Cf. 4D GR: functions in constraint algebra Blohmann, Barbosa Fernandes, Weinstein '10 nicely explained in Bojowald's book

* Not to forget: Kontsevich *-product is computed by a PSM ∂ correlator Cattaneo, Felder'99

But we forgot the third feature: reducibility ...

ClIMB TO 3D

* 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them. Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model

CLIMB TO 3D

* 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them. Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model

$$
S_{\mathrm{CSM}}=\int-B_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \eta_{a b} A^{a} \wedge \mathrm{~d} A^{b}+\rho_{a}^{\mu}(X) B_{\mu} \wedge A^{a}+\frac{1}{3!} C_{a b c}(X) A^{a} \wedge A^{b} \wedge A^{c}
$$

Climb to 3D

* 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them. Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model

$$
S_{\mathrm{CSM}}=\int-B_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \eta_{a b} A^{a} \wedge \mathrm{~d} A^{b}+\rho_{a}^{\mu}(X) B_{\mu} \wedge A^{a}+\frac{1}{3!} C_{a b c}(X) A^{a} \wedge A^{b} \wedge A^{c}
$$

* Rich shift / gauge symmetries; generic gauge algebra with all 3 features.
* Not in the Lie algebra case, nor in the "standard Courant algebroid" ($\rho=1, C=0$).
* The simplest genuine example of all 3 features is the lifting of the PSM to a 3D one: Such models, even deformed by "generalised R-flux", exist in any dimension Th Ch '21; Ikeda '21

$$
S_{\mathrm{PSM} 3}=\int-B_{\mu} \wedge \mathrm{d} X^{\mu}+A_{\mu} \wedge \mathrm{d} A^{\mu}+\Pi^{\mu \nu} B_{\mu} \wedge A_{\nu}+\frac{1}{2} \partial_{\rho} \Pi^{\mu \nu} A^{\rho} \wedge A_{\mu} \wedge A_{\nu}
$$

Climb to 3D

* 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them. Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model

$$
S_{\mathrm{CSM}}=\int-B_{\mu} \wedge \mathrm{d} X^{\mu}+\frac{1}{2} \eta_{a b} A^{a} \wedge \mathrm{~d} A^{b}+\rho_{a}^{\mu}(X) B_{\mu} \wedge A^{a}+\frac{1}{3!} C_{a b c}(X) A^{a} \wedge A^{b} \wedge A^{c}
$$

* Rich shift / gauge symmetries; generic gauge algebra with all 3 features.
* Not in the Lie algebra case, nor in the "standard Courant algebroid" ($\rho=1, C=0$).
* The simplest genuine example of all 3 features is the lifting of the PSM to a 3D one: Such models, even deformed by "generalised R-flux", exist in any dimension Th Ch '21; Ikeda '21

$$
S_{\mathrm{PSM} 3}=\int-B_{\mu} \wedge \mathrm{d} X^{\mu}+A_{\mu} \wedge \mathrm{d} A^{\mu}+\Pi^{\mu \nu} B_{\mu} \wedge A_{\nu}+\frac{1}{2} \partial_{\rho} \Pi^{\mu \nu} A^{\rho} \wedge A_{\mu} \wedge A_{\nu}
$$

* Such models capture NC / NA structure of "nongeometric" string backgrounds. Mylonas, Schupp, Szabo '12; ...

A Peculiarity: Nonlinear Openness

* Could the gauge algebra generate products of field equations?

A PeCULIARITY: NONLINEAR OpenNeSS

* Could the gauge algebra generate products of field equations? Yes!
* This can happen when we include Wess-Zumino-Witten terms.
cf. the chiral Lagrangian for Goldstones in 4D (5D WZW) or the principal chiral model in 2D (3D WZW)
* Could the gauge algebra generate products of field equations? Yes!
* This can happen when we include Wess-Zumino-Witten terms.
cf. the chiral Lagrangian for Goldstones in 4D (5D WZW) or the principal chiral model in 2D (3D WZW)
* 4-form twisted Courant sigma models in 3D Hansen, Strobl '09

$$
\begin{aligned}
& S_{\text {HCSM }}=S_{\text {CSM }}+\int_{B} \frac{1}{4!} H_{\mu \nu \rho \sigma}(X) \mathrm{d} X^{\mu} \wedge \mathrm{d} X^{\nu} \wedge \mathrm{d} X^{\rho} \wedge \mathrm{d} X^{\sigma} . \\
& {\left[\delta_{1}, \delta_{2}\right] B_{\mu}=\delta_{12} B_{\mu}+(\ldots)_{\mu \nu} \wedge F^{\nu}+(\ldots \partial H)_{\mu \nu \rho} F^{\nu} \wedge F^{\rho}+(\ldots)_{\mu \mathrm{a}} G^{a} .}
\end{aligned}
$$

Th Ch, Ikeda, Jonke '24

* (any+1)-form twisted R-Poisson sigma models in anyD Th Ch '21
* earlier instances, 3-form twisted PSM in 2D / more generally: Dirac SM without nonlinear openness Klimcik, Strobl '01; Schaller, Kotov, Strobl '04
* Price to pay: geometric structures are "twisted" \& BV/BRST is harder.

Graded Geometry \& AKSZ/BV

* Main idea: tensor fields = functions on graded manifolds
e.g. shifted tangent bundle $T[1] \Sigma$: A "Q-manifold" (HVF: $|Q|=1$ and $Q^{2}=0$) Coordinates: σ^{m} and θ^{m} with $\theta^{m} \theta^{n}=-\theta^{n} \theta^{m}$. Functions $\sim p$-forms $/ Q \equiv \mathrm{~d}=\theta^{m} \partial_{m}$

Graded Geometry \& AKSZ/BV

* Main idea: tensor fields = functions on graded manifolds e.g. shifted tangent bundle $T[1] \Sigma$: A "Q-manifold" (HVF: $|Q|=1$ and $Q^{2}=0$) Coordinates: σ^{m} and θ^{m} with $\theta^{m} \theta^{n}=-\theta^{n} \theta^{m}$. Functions $\sim p$-forms $/ Q \equiv \mathrm{~d}=\theta^{m} \partial_{m}$
* If also a compatible (graded) symplectic form s.t. $L_{Q} \Omega=0 \rightsquigarrow$ QP manifold.
* Classical theory: degree-preserving maps $\Phi: T[1] \Sigma \rightarrow \mathcal{M}$ with \mathcal{M} a QP target.
\div Hamiltonian $\Theta \in C^{\infty}(\mathcal{M})$ of degree $n+1$ with $Q=\{\Theta, \cdot\} . Q^{2}=0 \Rightarrow\{\Theta, \Theta\}=0$.
* Action functional of supermaps satisfying the Classical Master Equation

$$
S_{\mathrm{BV}}[\Phi]=\int_{\Sigma}\left(\frac{1}{2} \Omega_{a b} \Phi^{a} \wedge \mathrm{~d} \Phi^{b}+\Phi^{*}(\Theta)\right) \quad \Rightarrow \quad(S, S)_{B V}=0
$$

ExAMPLES VS. NON ExAMPLES

* $n=1: \mathcal{M}=T^{*}[1] M \rightsquigarrow$ Poisson sigma model (scalars / 1-forms)
* $n=2: \mathcal{M} \subset T^{*}[2] E[1] \rightsquigarrow$ Courant sigma model (scalars / 1-forms / 2-forms)
\% $n=3$: 3-brane sigma models (scalars / 1,2,3-forms)
cf. Plebanski formulation of GR (with constraint)
* $n=n$: Ševera's Σ_{n}-manifolds of which (untwisted) R-Poisson "brane mechanics" are a specific slice

EXAMPLES VS. NON EXAMPLES

* $n=1: \mathcal{M}=T^{*}[1] M \rightsquigarrow$ Poisson sigma model (scalars / 1-forms)
* $n=2: \mathcal{M} \subset T^{*}[2] E[1] \rightsquigarrow$ Courant sigma model (scalars / 1-forms / 2-forms)
* $n=3$: 3-brane sigma models (scalars / 1,2,3-forms)
cf. Plebanski formulation of GR (with constraint)
* $n=n$: Ševera's Σ_{n}-manifolds of which (untwisted) R-Poisson "brane mecharics" are a specific slice
* Q manifolds are not always QP ... Vanilla AKSZ does not apply. E.g. WZW terms also in a different direction, higher gauge theories as sigma models Grützmann, Strobl '14
* Non topological models

When $H_{n+2} \neq 0$, geometry comes to the rescue. In physics terms: Th Ch, Ikeda, Jonke '24

* Expand in antifields, as in the traditional BV approach
* Determine the geometric meaning of the coefficients in the interactions
* "Twist" by H_{n+2} the respective geometric structures

This is facilitated by an auxiliary affine connection ∇ on a suitable algebroid.
cf. Baulieu, Losev, Nekrasov '01; Cattaneo, Felder, Tomassini '00; Ikeda, Strobl '19

Specific torsion and ("basic") curvature tensors control all the interaction coefficients higher tensors for higher brackets in more than 3D ... Th Ch, Kodžoman, Škoda '24

DETOUR: $\quad L_{\infty}$ ALGEBROIDS

The mathematical explanation of the Q vs. QP story and the WZW terms goes as:
*Recall the "derived" bracket of vector fields on the exterior algebra of forms: cartan

$$
\iota_{[X, Y]}=\left[L_{X}, \iota_{Y}\right]=\left[\left[\mathrm{d}, \iota_{X}\right], \iota_{Y}\right] .
$$

* Think " $\mathrm{d}=Q$ " and take any homological vector field. Two constructions possible: Kosmann-Schwarzbach; Voronov; Roytenberg; Sheng, Zhu; Bonavolonta, Poncin; ...
* Construct an L_{∞} [1] Algebroid (for \mathcal{M} split) with graded symmetric brackets using the arity $k-1$ component of the HVF and graded vector field X_{i}

$$
\ell_{k}\left(X_{1}, \ldots, X_{k}\right)=\left[\ldots\left[\left[^{k-1} Q, X_{1}\right], X_{2}\right], \ldots\right] .
$$

* Construct a dgLA (for \mathcal{M} symplectic) using $\{\Theta,-\}$ and a Leibniz bracket, e.g.

$$
\{f, g\}_{\text {P.B. }}=\{\{\Theta, f\}, g\} \quad \text { (Poisson) } \quad e \circ e^{\prime}=\left\{\{\Theta, e\}, e^{\prime}\right\} \quad \text { (Dorfman) } \quad \text { \&c. }
$$

* When WZW terms are there, the 1st construction works better (with connection).

DETOUR: $\quad L_{\infty}$ ALGEBROIDS

* This $\mathrm{L}_{\infty}[1]$ algebroid construction gives natural geometrical tensors.
for QP2, cf. Gualtieri torsion, Riemann curvature, basic curvature Boffo, Schupp '19; Jurco, Vysoky '16, '23; Th Ch, Jonke '22
* Higher gauge theories as generalised σ-models based on Q (split) targets \mathcal{M}. as in Grutzmann, Strobl '14 and non Abelian gerbe examples of Ho, Matsuo '12 (in different formulation) and Strobl '16
* Not the full story, possible to have non C^{∞}-linear higher brackets \& higher anchors as in homotopy Poisson/P ∞_{∞} of Voronov, see also Herbig, Herber, Seaton '21; examples in Th Ch, Kodžoman, Škoda '24

Bidifferential
 Bigraded Manifolds

For bipartite tensors of degree $|\omega|=(p, q)$, consider functions on $T[1] \Sigma \oplus T[1] \Sigma$,

$$
\omega_{p, q}=\frac{1}{p!q!} \omega_{\mu_{1} \ldots \mu_{p} \nu_{1} \ldots \nu_{q}}(x) \theta^{\mu_{1}} \ldots \theta^{\mu_{p}} \chi^{\nu_{1}} \ldots \chi^{\nu_{q}}
$$

Two separate sets of odd coordinates θ^{μ} and χ^{μ} that mutually commute by convention,

$$
\theta^{\mu} \theta^{\nu}=-\theta^{\nu} \theta^{\mu}, \quad \chi^{\mu} \chi^{\nu}=-\chi^{\nu} \chi^{\mu}, \quad \theta^{\mu} \chi^{\nu}=\chi^{\nu} \theta^{\mu} .
$$

The components of the tensor field have manifest mixed index symmetry

$$
\omega_{\mu_{1} \ldots \mu_{\rho} \nu_{1} \ldots \nu_{q}}=\omega_{\left[\mu_{1} \ldots \mu_{\rho}\right]\left[\nu_{1} \ldots \nu_{q}\right]} .
$$

N.B. Useful to think of differential forms as bipartite tensors with 1 empty slot (p or q).
generalises to N-partite tensors; cf. the more general Ševera's differential gorms and worms, also with degree $(1,1)$ coordinates
Two commuting homological vector fields of degree $(1,0)$ and $(0,1)$:

$$
\mathrm{d}=\theta^{\mu} \frac{\partial}{\partial x^{\mu}} \text { and } \tilde{\mathrm{d}}=\chi^{\mu} \frac{\partial}{\partial x^{\mu}} \text { with } \mathrm{d}^{2}=0=\widetilde{\mathrm{d}}^{2} \quad \text { and } \quad \mathrm{d} \tilde{\mathrm{~d}}=\widetilde{\mathrm{d}} \mathrm{~d} .
$$

A DOUBLE COMPLEX

graded analogon of closely related formalism by Bekaert, Boulanger, de Medeiros, Hull ... Identities as commutative diagrams

WHAT FOR

* A simple \& universal graded formulation of mixed symmetry tensor field theories
* Unified formalism for scalars, p-forms, gravitons, the Curtright field (2,1), \&c.
\div \{kinetic, θ, mass $\}$ terms, healthy higher- ∂ interactions, nonlinear p-form ED work with Giorgos Karagiannis, Fech Scen Khoo, Diederik Roest, Peter Schupp '16-'20
* A systematic treatment of various dualities, off-shell, single and multi field
* Universal parent action and higher duality ("Buscher") rules
* Generalised global symmetries as (jet) isometries \& tracking of 't Hooft anomalies
* Off-shell duality for the graviton with θ term
* "Axion gravitodynamics"
work with Giorgos Karagiannis, George Manolakos,Arash Ranjbar, Peter Schupp '19-'22

LAGRANGIANS

Generalized Hodge DuAlity

To construct Lagrangians, we need a suitable inner product. Generalized Hodge star:

$$
(\star \omega)_{D-p, D-q}=\frac{1}{(D-p-q)!} \eta^{D-p-q} \omega_{q, p}^{\mathrm{T}} .
$$

The combination $* \widetilde{*}$ (of standard Hodge) is different than \star (it also encodes traces) :

$$
\star \omega=* *(-1)^{\epsilon} \sum_{n=0}^{\min (p, q)} \frac{(-1)^{n}}{(n!)^{2}} \eta^{n} \operatorname{tr}^{n} \omega, \quad(\epsilon=(D-1)(p+q)+p q+1) .
$$

A symmetric inner product of some ω and ω^{\prime} is then simply defined by $\int_{\theta, \chi} \omega \star \omega^{\prime}$.

KInetIC AND MASS TERMS

$$
\mathcal{L}_{\text {kin }}\left(\omega_{p, q}\right)=\int_{\theta, \chi} \mathrm{d} \omega \star \mathrm{~d} \omega . \quad \mathcal{L}_{\text {mass }}\left(\omega_{p, q}\right)=m^{2} \int_{\theta, \chi} \omega \star \omega
$$

* For differential forms $(q=0) \rightsquigarrow p$-form electrodynamics.
* For $p=q=1 \rightsquigarrow$ linearized Einstein-Hilbert / Fierz-Pauli:

$$
\begin{aligned}
& \mathcal{L}_{\text {kin }}=-\frac{1}{4} h^{\mu}{ }_{\mu} \square h_{\nu}^{\nu}+\frac{1}{2} h^{\lambda}{ }_{\lambda} \partial_{\mu} \partial_{\nu} h^{\mu \nu}-\frac{1}{2} h_{\mu \nu} \partial^{\nu} \partial_{\lambda} h^{\mu \lambda}+\frac{1}{4} h_{\mu \nu} \square h^{\mu \nu}, \\
& \mathcal{L}_{\text {mass }}=m^{2}\left(h^{\mu \nu} h_{\mu \nu}-\left(h^{\mu}{ }_{\mu}\right)^{2}\right) .
\end{aligned}
$$

*For $p=2, q=1$, the gauge theory for the hook Young tableaux Curtright' 80

$$
\begin{aligned}
\mathcal{L}_{\text {kin }}= & \frac{1}{2}\left(\partial_{\mu} \omega_{\nu \kappa \mid \lambda} \partial^{\mu} \omega^{\nu \kappa \mid \lambda}-2 \partial_{\mu} \omega^{\mu \nu \mid \kappa} \partial^{\lambda} \omega_{\lambda \nu \mid \kappa}-\partial_{\mu} \omega^{\nu \kappa \mid \mu} \partial^{\lambda} \omega_{\nu \kappa \mid \lambda}-\right. \\
& \left.-4 \omega_{\mu}{ }^{\nu \mid \mu} \partial^{\kappa} \partial^{\lambda} \omega_{\kappa \nu \mid \lambda}-2 \partial_{\mu} \omega_{\nu}^{\kappa \mid \nu} \partial^{\mu} \omega^{\lambda}{ }_{\kappa \mid \lambda}+2 \partial_{\mu} \omega_{\nu}^{\mu \mid \nu} \partial^{\kappa} \omega^{\lambda}{ }_{\kappa \mid \lambda}\right), \\
\mathcal{L}_{\text {mass }}= & m^{2}\left(\omega^{\mu \nu \mid \rho} \omega_{\mu \nu \mid \rho}-2 \omega^{\mu} \omega_{\mu}\right) . \text { cf. Bergshoeff, Fermandez-Melgarej, Rosseel, Townsend '12 }
\end{aligned}
$$

Define $\omega_{(n+1)} \equiv \omega(\mathrm{d} \tilde{\mathrm{d}} \omega)^{n}$. For any bipartite tensor in any D, universal interactions:

$$
\mathcal{L}_{\mathrm{Gal}}\left(\omega_{p, q}\right)=\sum_{n=0}^{n_{\max }} \int_{\theta, \chi} \mathrm{d} \omega_{(n+1)} \star \mathrm{d} \omega_{(n+1)}
$$

Single-field, 2nd-order (polynomial) EOMs. Note: only even field appearances here.

When $p=q$ (scalars, gravitons, $(2,2) s \& c$.$) , an enhancement to odd fields$

$$
\widetilde{\mathcal{L}}_{\mathrm{Gal}}\left(\omega_{p, p}\right)=\mathcal{L}_{\mathrm{Gal}}(\omega)+\sum_{n} \int_{\theta, \chi} \eta^{p+1} \mathrm{~d} \omega_{(n)} \star \mathrm{d} \omega_{(n+1)}=\sum_{n=1}^{n_{\text {max }}} \int_{\theta, \chi} \eta^{D-(p+1) n-p} \omega_{(n+1)}
$$

straightforward to do multi-field, up-to-2nd-order EOM / also to find expanded versions (but they will be very complicated) cf. Nicolis, Ratazzi, Trincherini '08; Deffayet, Deser, Esposito-Farese '09-'10; ...
also for higher spins, with suitable generalised Hodge; yields the formulation of Francia, Sagnotti '02 and nonlocal Galileons

Generalised Global Symmetries

Global Symmetries \& 't Hooft Amomaly

* Free Maxwell theory has two 1-form $U(1)$ global symmetries (electric/magnetic)
$\%$ The conserved currents are the 2-forms: F and $* F$ give topological operators, act on Wilson/t Hooft
$\%$ Background fields that can couple to the currents are two 2-forms B_{e} and B_{m}
* They have background gauge transformation: $B_{\mathrm{e} / \mathrm{m}} \rightarrow B_{\mathrm{e} / \mathrm{m}}+\mathrm{d} \Lambda_{\mathrm{e} / \mathrm{m}}$
* Electric description: $U(1)$ gauge field A, which shifts by Λ_{e} but is inert under magnetic
* Action coupled to background fields we can add the ϑ term too

$$
S=\frac{1}{2 e^{2}} \int\left(F-B_{\mathrm{e}}\right) \wedge *\left(F-B_{\mathrm{e}}\right)+\frac{i}{2 \pi} \int B_{\mathrm{m}} \wedge F .
$$

* Under background gauge transformations: $S \rightarrow S+\frac{i}{2 \pi} \int \Lambda_{e} \wedge \mathrm{~d} B_{\mathrm{m}}$.
* Mixed $U(1)_{\mathrm{e}}-U(1)_{\mathrm{m}}$ 't Hooft anomaly via inflow from 6D polynomial $\mathrm{d} B_{\mathrm{m}} \wedge \mathrm{d} B_{\mathrm{e}}$
* In the dual theory the currents are exchanged, the anomaly is reproduced
* Anomaly matching also for scalars, multiple fields, nonlinear theories ...

Graded Isometries

* Philosophy of Generalised Global Symmetries: the photon is a NG boson.
* Nonlinear sigma models were introduced for (scalar) NG bosons. Gell-Mann, Levy '60
* Q-manifold Philosophy: Generalised sigma models with graded coordinates.
* In 2D NLSMs global symmetries are identified by background isometries:

$$
\delta X=\rho(\epsilon) \quad \text { iff } \quad \mathcal{L}_{\rho} G=0 \quad \text { and } \quad \mathcal{L}_{\rho} B=\mathrm{d} \alpha
$$

* Similarly when the couplings depend on derivatives too (see Heisenberg pion fireball model):

$$
\delta X=\rho(\epsilon) \quad \text { and } \quad \delta \mathrm{d} X=\xi(\epsilon) \quad \text { iff } \quad \widehat{\mathcal{L}}_{V} G=0 \quad \text { and } \quad \widehat{\mathcal{L}}_{V} B=\mathrm{d} \beta
$$

with V in the 1 -jet and $\widehat{\mathcal{L}}$ the 1 -jet Lie derivative.

* For Abelian 1-forms in 4D, same-yet-graded result! a graded Lie derivative along a graded VF

OPEN QUESTIONS

\% Is the graviton a Nambu-Goldstone boson for some global symmetry? for a proposal on this see Hinterbichler, Hofman, Joyce, Mathys '23

* Does linGR have a 't Hooft anomaly? How does it inflow?
* What are the topological operators and the extended observables then?
tensor gauge theories relevant elsewhere too, e.g. physics of reduced mobility quasiparticles (fractons, lineons, planons)
\% Is there a Coleman-Mermin-Wagner theorem for gravitons?
\% Do mixed symmetry tensors gauge theories arise as bg fields for such GGSs?
* ...

Thank You

\&

HAPPY BIRThDAY MAJA!!!

