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WHY & WHAT FOR?



✤ Quantization of gauge systems⇝ BV/BRST formalism

✤ Field theories with p-form fields⇝ Higher Gauge Theories

✤ Generalizations of Global Symmetries - Topological Operators

✤ Generalized geometric models for Gravity & (Quantum?) Spacetime



BV/BRST

Three general possible features for gauge systems:

✿ Gauge algebra closes only on-shell

✿ Field-dependent structure functions

✿ Reducibility of gauge generators

For Yang-Mills-like models of ordinary gauge fields (e.g. SM), none of these applies ...
needless to say, still important classically (conservation laws, interactions, gauge-fix) and quantumly (anomalies, renormalization)

Initially developed for rather complicated theories.

What is the simplest theory with all these features?
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DILATON GRAVITY (2D)

✿ Models of 2D gravity (JT, R2, ...) elegantly unify into the Poisson sigma model.
Ikeda ’93; Schaller, Strobl ’93 Can also arise as a deformation of 2D BF theory or from gauging

SPSM =

∫
Aµ ∧ dXµ +

1
2
Πµν(X )Aµ ∧ Aν .

✿ Almost standard gauge theory, but “non-linear”; the gauge symmetries are

δXµ = Πµν(X )ϵµ and δAµ = dϵµ + ∂µΠ
νρ(X )Aνϵρ .

✿ The gauge algebra contains functions and (generically) closes only on-shell

[δ1, δ2]Aµ = δ12Aµ + ∂µ∂νΠ
ρσ(X )ϵρϵσ(dXν +ΠνκAκ) , ϵ12µ = ∂µΠ

νρ(X )ϵ1νϵ2ρ .

✿ 1st-class constrained Hamiltonian system.
Cf. 4D GR: functions in constraint algebra Blohmann, Barbosa Fernandes, Weinstein ’10 nicely explained in Bojowald’s book

✿ Not to forget: Kontsevich ⋆-product is computed by a PSM ∂ correlator Cattaneo, Felder ’99

But we forgot the third feature: reducibility ...
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CLIMB TO 3D

✿ 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them.
Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model

SCSM =

∫
−Bµ ∧ dXµ +

1
2
ηabAa ∧ dAb + ρµa (X )Bµ ∧ Aa +

1
3!

Cabc(X )Aa ∧ Ab ∧ Ac .

✿ Rich shift / gauge symmetries; generic gauge algebra with all 3 features.

✤ Not in the Lie algebra case, nor in the “standard Courant algebroid” (ρ = 1, C = 0).

✤ The simplest genuine example of all 3 features is the lifting of the PSM to a 3D one:
Such models, even deformed by “generalised R-flux”, exist in any dimension Th Ch ’21; Ikeda ’21

SPSM3 =

∫
−Bµ ∧ dXµ + Aµ ∧ dAµ +ΠµνBµ ∧ Aν +

1
2
∂ρΠ

µνAρ ∧ Aµ ∧ Aν .

✿ Such models capture NC / NA structure of “nongeometric” string backgrounds.
Mylonas, Schupp, Szabo ’12; ...
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A PECULIARITY: NONLINEAR OPENNESS

✿ Could the gauge algebra generate products of field equations?

Yes!

✿ This can happen when we include Wess-Zumino-Witten terms.
cf. the chiral Lagrangian for Goldstones in 4D (5D WZW) or the principal chiral model in 2D (3D WZW)

✤ 4-form twisted Courant sigma models in 3D Hansen, Strobl ’09

SHCSM = SCSM +

∫
B

1
4!

Hµνρσ(X)dXµ ∧ dXν ∧ dXρ ∧ dXσ .

[δ1, δ2]Bµ = δ12Bµ + (. . . )µν ∧ Fν + (. . . ∂H)µνρFν ∧ Fρ + (. . . )µaGa .

Th Ch, Ikeda, Jonke ’24

✤ (any+1)-form twisted R-Poisson sigma models in anyD Th Ch ’21

✤ earlier instances, 3-form twisted PSM in 2D / more generally: Dirac SM
without nonlinear openness Klimcik, Strobl ’01; Schaller, Kotov, Strobl ’04

✿ Price to pay: geometric structures are “twisted” & BV/BRST is harder.
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GRADED GEOMETRY & AKSZ/BV

✤ Main idea: tensor fields = functions on graded manifolds

e.g. shifted tangent bundle T [1]Σ: A “Q-manifold” (HVF: |Q| = 1 and Q2 = 0)

Coordinates: σm and θm with θmθn = −θnθm. Functions ∼ p-forms / Q ≡ d = θm∂m

✤ If also a compatible (graded) symplectic form s.t. LQΩ = 0⇝ QP manifold.

✤ Classical theory: degree-preserving maps Φ : T [1]Σ → M with M a QP target.

✤ Hamiltonian Θ ∈ C∞(M) of degree n + 1 with Q = {Θ, ·}. Q2 = 0 ⇒ {Θ,Θ} = 0.

✤ Action functional of supermaps satisfying the Classical Master Equation

SBV[Φ] =

∫
Σ

(
1
2
ΩabΦ

a ∧ dΦb +Φ∗(Θ)

)
⇒ (S,S)BV = 0 .
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EXAMPLES VS. NON EXAMPLES

✿ n = 1: M = T ∗[1]M ⇝ Poisson sigma model (scalars / 1-forms)

✿ n = 2: M ⊂ T ∗[2]E [1]⇝ Courant sigma model (scalars / 1-forms / 2-forms)

✿ n = 3: 3-brane sigma models (scalars / 1,2,3-forms)
cf. Plebanski formulation of GR (with constraint)

✿ n = n: Ševera’s Σn-manifolds of which (untwisted) R-Poisson “brane mechanics” are a specific slice

✤ Q manifolds are not always QP ... Vanilla AKSZ does not apply. E.g. WZW terms
also in a different direction, higher gauge theories as sigma models Grützmann, Strobl ’14

✤ Non topological models
but AKSZ-like: “presymplectic AKSZ” of GR4 Grigoriev, Kotov ’20 “BFV/AKSZ” of EC4 Canepa, Cattaneo, Schiavina ’21
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NON EXAMPLES AS EXAMPLES / WZW CASE

When Hn+2 ̸= 0, geometry comes to the rescue. In physics terms: Th Ch, Ikeda, Jonke ’24

✤ Expand in antifields, as in the traditional BV approach

✤ Determine the geometric meaning of the coefficients in the interactions

✤ “Twist” by Hn+2 the respective geometric structures

This is facilitated by an auxiliary affine connection ∇ on a suitable algebroid.
cf. Baulieu, Losev, Nekrasov ’01; Cattaneo, Felder, Tomassini ’00; Ikeda, Strobl ’19

Specific torsion and (“basic”) curvature tensors control all the interaction coefficients
higher tensors for higher brackets in more than 3D ... Th Ch, Kodžoman, Škoda ’24



DETOUR: L∞ ALGEBROIDS

The mathematical explanation of the Q vs. QP story and the WZW terms goes as:

✿ Recall the “derived” bracket of vector fields on the exterior algebra of forms: Cartan

ι[X ,Y ] = [LX , ιY ] = [[d, ιX ], ιY ] .

✿ Think “d = Q” and take any homological vector field. Two constructions possible:
Kosmann-Schwarzbach; Voronov; Roytenberg; Sheng, Zhu; Bonavolonta, Poncin; ...

✤ Construct an L∞[1] Algebroid (for M split) with graded symmetric brackets
using the arity k − 1 component of the HVF and graded vector field Xi

ℓk (X1, . . . ,Xk ) = [. . . [[k−1Q,X1],X2], . . . ] .

✤ Construct a dgLA (for M symplectic) using {Θ,−} and a Leibniz bracket, e.g.

{f , g}P.B. = {{Θ, f}, g} (Poisson) e ◦ e′ = {{Θ, e}, e′} (Dorfman) &c.

✿ When WZW terms are there, the 1st construction works better (with connection).



DETOUR: L∞ ALGEBROIDS

✿ This L∞[1] algebroid construction gives natural geometrical tensors.
for QP2, cf. Gualtieri torsion, Riemann curvature, basic curvature Boffo, Schupp ’19; Jurco, Vysoky ’16, ’23; Th Ch, Jonke ’22

✿ Higher gauge theories as generalised σ-models based on Q (split) targets M.
as in Grutzmann, Strobl ’14 and non Abelian gerbe examples of Ho, Matsuo ’12 (in different formulation) and Strobl ’16

✿ Not the full story, possible to have non C∞-linear higher brackets & higher anchors
as in homotopy Poisson/P∞ of Voronov, see also Herbig, Herber, Seaton ’21; examples in Th Ch, Kodžoman, Škoda ’24



BIDIFFERENTIAL
BIGRADED MANIFOLDS



MIXED SYMMETRY TENSOR FIELDS AS FUNCTIONS

For bipartite tensors of degree |ω| = (p, q), consider functions on T [1]Σ⊕ T [1]Σ,

ωp,q =
1

p!q!
ωµ1...µpν1...νq (x) θ

µ1 . . . θµpχν1 . . . χνq .

Two separate sets of odd coordinates θµ and χµ that mutually commute by convention,

θµθν = −θνθµ , χµχν = −χνχµ , θµχν = χνθµ .

The components of the tensor field have manifest mixed index symmetry

ωµ1...µpν1...νq = ω[µ1...µp ][ν1...νq ] .

N.B. Useful to think of differential forms as bipartite tensors with 1 empty slot (p or q).
generalises to N-partite tensors; cf. the more general Ševera’s differential gorms and worms, also with degree (1,1) coordinates

Two commuting homological vector fields of degree (1,0) and (0,1):

d = θµ
∂

∂xµ
and d̃ = χµ ∂

∂xµ
with d2 = 0 = d̃2 and d d̃ = d̃ d .



A DOUBLE COMPLEX

graded analogon of closely related formalism by Bekaert, Boulanger, de Medeiros, Hull ... Identities as commutative diagrams



WHAT FOR

✿ A simple & universal graded formulation of mixed symmetry tensor field theories

✤ Unified formalism for scalars, p-forms, gravitons, the Curtright field (2,1), &c.

✤ {kinetic, θ, mass} terms, healthy higher-∂ interactions, nonlinear p-form ED

work with Giorgos Karagiannis, Fech Scen Khoo, Diederik Roest, Peter Schupp ’16-’20

✿ A systematic treatment of various dualities, off-shell, single and multi field

✤ Universal parent action and higher duality (“Buscher”) rules

✤ Generalised global symmetries as (jet) isometries & tracking of ’t Hooft anomalies

✤ Off-shell duality for the graviton with θ term

✤ “Axion gravitodynamics”

work with Giorgos Karagiannis, George Manolakos,Arash Ranjbar, Peter Schupp ’19-’22



LAGRANGIANS



GENERALIZED HODGE DUALITY

To construct Lagrangians, we need a suitable inner product. Generalized Hodge star:

(⋆ω)D−p,D−q =
1

(D − p − q)!
ηD−p−q ωT

q,p .

The combination ∗∗̃ (of standard Hodge) is different than ⋆ (it also encodes traces) :

⋆ ω = ∗ ∗̃ (−1)ϵ
min(p,q)∑

n=0

(−1)n

(n!)2 ηn trn ω , (ϵ = (D − 1)(p + q) + pq + 1) .

A symmetric inner product of some ω and ω′ is then simply defined by
∫
θ,χ

ω ⋆ ω′.



KINETIC AND MASS TERMS

Lkin(ωp,q) =

∫
θ,χ

dω ⋆ dω . Lmass(ωp,q) = m2
∫
θ,χ

ω ⋆ ω .

✿ For differential forms (q = 0)⇝ p-form electrodynamics.

✿ For p = q = 1⇝ linearized Einstein-Hilbert / Fierz-Pauli:

Lkin = −1
4

hµ
µ□hν

ν +
1
2

hλ
λ∂µ∂νhµν − 1

2
hµν∂

ν∂λhµλ +
1
4

hµν□hµν ,

Lmass = m2
(

hµνhµν − (hµ
µ)

2
)
.

✿ For p = 2, q = 1, the gauge theory for the hook Young tableaux Curtright ’80

Lkin =
1
2

(
∂µωνκ|λ∂

µωνκ|λ − 2∂µω
µν|κ∂λωλν|κ − ∂µω

νκ|µ∂λωνκ|λ −

− 4ωµ
ν|µ∂κ∂λωκν|λ − 2∂µων

κ|ν∂µωλ
κ|λ + 2∂µων

µ|ν∂κωλ
κ|λ

)
,

Lmass = m2
(
ωµν|ρωµν|ρ − 2ωµωµ

)
. cf. Bergshoeff, Fernandez-Melgarejo, Rosseel, Townsend ’12



TENSOR GALILEONS AS ‘‘GENERALISED KINETIC TERMS’’

Define ω(n+1) ≡ ω
(

dd̃ω
)n

. For any bipartite tensor in any D, universal interactions:

LGal(ωp,q) =

nmax∑
n=0

∫
θ,χ

dω(n+1) ⋆ dω(n+1) ,

Single-field, 2nd-order (polynomial) EOMs. Note: only even field appearances here.

When p = q (scalars, gravitons, (2, 2)s &c.), an enhancement to odd fields

L̃Gal(ωp,p) = LGal(ω) +
∑

n

∫
θ,χ

ηp+1dω(n) ⋆ dω(n+1) =

nmax∑
n=1

∫
θ,χ

ηD−(p+1)n−p ω(n+1) .

straightforward to do multi-field, up-to-2nd-order EOM / also to find expanded versions (but they will be very complicated)

cf. Nicolis, Ratazzi, Trincherini ’08; Deffayet, Deser, Esposito-Farese ’09-’10; ...

also for higher spins, with suitable generalised Hodge; yields the formulation of Francia, Sagnotti ’02 and nonlocal Galileons



GENERALISED GLOBAL SYMMETRIES



GLOBAL SYMMETRIES & ’T HOOFT AMOMALY
Gaiotto, Kapustin, Seiberg, Willet ’14; Cordova, Dumitrescu, Intriligator ’18

✿ Free Maxwell theory has two 1-form U(1) global symmetries (electric/magnetic)
✤ The conserved currents are the 2-forms: F and ∗F give topological operators, act on Wilson/’t Hooft

✤ Background fields that can couple to the currents are two 2-forms Be and Bm

✤ They have background gauge transformation: Be/m → Be/m + dΛe/m

✤ Electric description: U(1) gauge field A, which shifts by Λe but is inert under magnetic

✿ Action coupled to background fields we can add the ϑ term too

S =
1

2e2

∫
(F − Be) ∧ ∗(F − Be) +

i
2π

∫
Bm ∧ F .

✤ Under background gauge transformations: S → S + i
2π

∫
Λe ∧ dBm.

✤ Mixed U(1)e-U(1)m ’t Hooft anomaly via inflow from 6D polynomial dBm ∧ dBe

✤ In the dual theory the currents are exchanged, the anomaly is reproduced

✿ Anomaly matching also for scalars, multiple fields, nonlinear theories ...
Th Ch, Karagiannis, Ranjbar ’22



GRADED ISOMETRIES

✿ Philosophy of Generalised Global Symmetries: the photon is a NG boson.

✿ Nonlinear sigma models were introduced for (scalar) NG bosons. Gell-Mann, Levy ’60

✿ Q-manifold Philosophy: Generalised sigma models with graded coordinates.

✤ In 2D NLSMs global symmetries are identified by background isometries:

δX = ρ(ϵ) iff LρG = 0 and LρB = dα .

✤ Similarly when the couplings depend on derivatives too (see Heisenberg pion fireball model):

δX = ρ(ϵ) and δdX = ξ(ϵ) iff L̂V G = 0 and L̂V B = dβ ,

with V in the 1-jet and L̂ the 1-jet Lie derivative.

✤ For Abelian 1-forms in 4D, same-yet-graded result! a graded Lie derivative along a graded VF



OPEN QUESTIONS

✿ Is the graviton a Nambu-Goldstone boson for some global symmetry?
for a proposal on this see Hinterbichler, Hofman, Joyce, Mathys ’23

✿ Does linGR have a ’t Hooft anomaly? How does it inflow?

✿ What are the topological operators and the extended observables then?
tensor gauge theories relevant elsewhere too, e.g. physics of reduced mobility quasiparticles (fractons, lineons, planons)

✿ Is there a Coleman-Mermin-Wagner theorem for gravitons?

✿ Do mixed symmetry tensors gauge theories arise as bg fields for such GGSs?

✿ ...
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