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WHY & WHAT FOR?



+ Quantization of gauge systems ~~» BV/BRST formalism
« Field theories with p-form fields ~~ Higher Gauge Theories
« Generalizations of Global Symmetries - Topological Operators

+ Generalized geometric models for Gravity & (Quantum?) Spacetime



BV/BRST

Three general possible features for gauge systems:
« Gauge algebra closes only on-shell
« Field-dependent structure functions

« Reducibility of gauge generators



BV/BRST

Three general possible features for gauge systems:
« Gauge algebra closes only on-shell
« Field-dependent structure functions

« Reducibility of gauge generators

For Yang-Mills-like models of ordinary gauge fields (e.g. SM), none of these applies ...

needless to say, still important classically (conservation laws, interactions, gauge-fix) and quantumly (anomalies, renormalization)
Initially developed for rather complicated theories.

What is the simplest theory with all these features?



DILATON GRAVITY (2D)

« Models of 2D gravity (JT, R?, ...) elegantly unify into the Poisson sigma model.

Ikeda '93; Schaller, Strobl ‘93 Can also arise as a deformation of 2D BF theory or from gauging
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#« Not to forget: Kontsevich x-product is computed by a PSM 9 correlator cattaneo, Felder '99



DILATON GRAVITY (2D)
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Ikeda '93; Schaller, Strobl '93 Can also arise as a deformation of 2D BF theory or from gauging
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[61,82]Au = 81244 + 0,0,11°7 (X)epeo (AX” + M""AL), €12, = 8,17 (X)ervea, -

« 1st-class constrained Hamiltonian system.

Cf. 4D GR: functions in constraint algebra Blohmann, Barbosa Fernandes, Weinstein "10 nicely explained in Bojowald’s book

#« Not to forget: Kontsevich x-product is computed by a PSM 9 correlator cattaneo, Felder '99

But we forgot the third feature: reducibility ...
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« 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them.

Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model
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« 2 BF theories: scalar/2-form and 1-form/1-form (a.k.a. Chern-Simons): couple them.

Ikeda; Hofman, Park; Roytenberg Not to forget: 3D GR is a special case of this, here thought of as a sigma model
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& Canc(X)AP N AP A A°.

Sosu = /—BH AAX" 4 2naA® AdA® 4 pE(X)B, A A+
# Rich shift / gauge symmetries; generic gauge algebra with all 3 features.

<+ Not in the Lie algebra case, nor in the “standard Courant algebroid” (o = 1, C = 0).

+ The simplest genuine example of all 3 features is the lifting of the PSM to a 3D one:
Such models, even deformed by “generalised R-flux”, exist in any dimension Th Ch '21; lkeda "21
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#« Such models capture NC / NA structure of “nongeometric” string backgrounds.
Mylonas, Schupp, Szabo '12; ...
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A PECULIARITY: NONLINEAR OPENNESS

#« Could the gauge algebra generate products of field equations? Yes!

« This can happen when we include Wess-Zumino-Witten terms.
cf. the chiral Lagrangian for Goldstones in 4D (5D WZW) or the principal chiral model in 2D (3D WZW)

+ 4-form twisted Courant sigma models in 3D Hansen, Strobl '09
1
SHCSM = SCSM +/ ZH}LVPO'(X)dXH AdXY AdXP AdXE .
B 4:

[51 s 52]BM = 51QBH + ( .. )HV AFY + ( .. 8H)WJPFV A FP + ( .. )MaGa.
Th Ch, lkeda, Jonke 24
+ (any+1)-form twisted R-Poisson sigma models in anyD Th ch 21

+ earlier instances, 3-form twisted PSM in 2D / more generally: Dirac SM
without nonlinear openness Klimcik, Strobl '01; Schaller, Kotov, Strobl ‘04

« Price to pay: geometric structures are “twisted” & BV/BRST is harder.



GRADED GEOMETRY & AKSZ/BV

+ Main idea: tensor fields = functions on graded manifolds
e.g. shifted tangent bundle T[1]X: A “Q-manifold” (HVF: |Q| = 1 and Q® = 0)
Coordinates: ™ and ™ with 079" = —0"6™. Functions ~ p-forms/ Q=d = 0"0n



GRADED GEOMETRY & AKSZ/BV

Main idea: tensor fields = functions on graded manifolds
e.g. shifted tangent bundle T[1]Z: A “Q-manifold” (HVF: |Q| = 1 and Q°* = 0)
Coordinates: ™ and ™ with 079" = —0"6™. Functions ~ p-forms/ Q=d = 0"0n

If also a compatible (graded) symplectic form s.t. LoQ2 = 0 ~» QP manifold.
Classical theory: degree-preserving maps ¢ : T[1]X — M with M a QP target.
Hamiltonian © € C>(M) of degree n+ 1 with Q = {©,-}. @@ =0= {©,0} = 0.
Action functional of supermaps satisfying the Classical Master Equation

SB\/[q)] = / (%Qabq)a A d¢b + q)*(e)) = (87 S)BV = 0 °
x



EXAMPLES VS. NON EXAMPLES

n=1: M = T*[1]M ~~ Poisson sigma model (scalars / 1-forms)
n=2: M C T*[2]E[1] ~ Courant sigma model (scalars / 1-forms / 2-forms)

n = 3: 3-brane sigma models (scalars / 1,2,3-forms)

cf. Plebanski formulation of GR (with constraint)

n = n: Severa’s 3 p-manifolds of which (untwisted) R-Poisson “brane mechanics” are a specific slice



EXAMPLES VS. NON EXAMPLES

n=1: M = T*[1]M ~~ Poisson sigma model (scalars / 1-forms)
n=2: M C T*[2]E[1] ~ Courant sigma model (scalars / 1-forms / 2-forms)
n = 3: 3-brane sigma models (scalars / 1,2,3-forms)

cf. Plebanski formulation of GR (with constraint)

n = n: Severa’s 3 p-manifolds of which (untwisted) R-Poisson “brane mechanics” are a specific slice

Q manifolds are not always QP ... Vanilla AKSZ does not apply. E.g. WZW terms

also in a different direction, higher gauge theories as sigma models Griitzmann, Strobl '14

Non topological models
but AKSZ-like: “presymplectic AKSZ” of GR4 Grigoriev, Kotov 20 “BFV/AKSZ” of EC4 Canepa, Cattaneo, Schiavina 21



NoN EXAMPLES AS EXAMPLES / WZW CASE

When H,.»> # 0, geometry comes to the rescue. In physics terms: Th ch, ikeda, Jonke 24
+ Expand in antifields, as in the traditional BV approach
+ Determine the geometric meaning of the coefficients in the interactions
+ “Twist” by H,,2 the respective geometric structures

This is facilitated by an auxiliary affine connection V on a suitable algebroid.
cf. Baulieu, Losev, Nekrasov '01; Cattaneo, Felder, Tomassini '00; lkeda, Strobl '19

Specific torsion and (“basic”) curvature tensors control all the interaction coefficients
higher tensors for higher brackets in more than 3D ... Th Ch, KodZzoman, Skoda 24



DETOUR: L, ALGEBROIDS

The mathematical explanation of the Q vs. QP story and the WZW terms goes as:
« Recall the “derived” bracket of vector fields on the exterior algebra of forms: cartan
tx,v] = [Lx;ev] = [[d, ex], ev] -

#« Think “d = Q" and take any homological vector field. Two constructions possible:
Kosmann-Schwarzbach; Voronov; Roytenberg; Sheng, Zhu; Bonavolonta, Poncin; ...

+ Construct an L.[1] Algebroid (for M split) with graded symmetric brackets
using the arity k — 1 component of the HVF and graded vector field X;

L Xy, X)) =1 7@, X4], Xal, - ]

+ Construct a dgLA (for M symplectic) using {©, —} and a Leibniz bracket, e.g.
{f,g}ps. = {{O©,f},9} (Poisson) eoe’ ={{O©,e},e'} (Dorfman) &c.

« When WZW terms are there, the 1st construction works better (with connection).



DETOUR: L, ALGEBROIDS

# This Lo [1] algebroid construction gives natural geometrical tensors.
for QP2, cf. Gualtieri torsion, Riemann curvature, basic curvature Boffo, Schupp '19; Jurco, Vysoky '16, '23; Th Ch, Jonke '22

« Higher gauge theories as generalised o-models based on Q (split) targets M.

as in Grutzmann, Strobl '14 and non Abelian gerbe examples of Ho, Matsuo '12 (in different formulation) and Strobl '16

« Not the full story, possible to have non C°°-linear higher brackets & higher anchors

as in homotopy Poisson/P ., of Voronov, see also Herbig, Herber, Seaton '21; examples in Th Ch, Kodzoman, Skoda '24



BIDIFFERENTIAL
BIGRADED MANIFOLDS



MIXED SYMMETRY TENSOR FIELDS AS FUNCTIONS

For bipartite tensors of degree |w| = (p, q), consider functions on T[1]X & T[1]Z%,

1

Mwm,_,upwmyq(x) (L L Ve I Vol I

Wp,g =

Two separate sets of odd coordinates 6 and x* that mutually commute by convention,

016" = —0"0", X"Xx"=-X"X", 0"X"=x"0".

The components of the tensor field have manifest mixed index symmetry

Wt ooopipryovg = Wy ...ppllvy...vq] -

N.B. Useful to think of differential forms as bipartite tensors with 1 empty slot (p or g).

generalises to N-partite tensors; cf. the more general Severa’s differential gorms and worms, also with degree (1,1) coordinates

Two commuting homological vector fields of degree (1,0) and (0,1):

dz@“% and H:X“% with d2=0=d? and dd=4dd.



A DOUBLE COMPLEX

graded analogon of closely related formalism by Bekaert, Boulanger, de Medeiros, Hull ... Identities as commutative diagrams




WHAT FOR

#« A simple & universal graded formulation of mixed symmetry tensor field theories

+ Unified formalism for scalars, p-forms, gravitons, the Curtright field (2,1), &c.
+ {kinetic, 6, mass} terms, healthy higher-0 interactions, nonlinear p-form ED

work with Giorgos Karagiannis, Fech Scen Khoo, Diederik Roest, Peter Schupp '16-20

#« A systematic treatment of various dualities, off-shell, single and multi field

+ Universal parent action and higher duality (“Buscher”) rules

<+ Generalised global symmetries as (jet) isometries & tracking of 't Hooft anomalies
+ Off-shell duality for the graviton with 6 term

+ “Axion gravitodynamics”

work with Giorgos Karagiannis, George Manolakos,Arash Ranjbar, Peter Schupp '19-'22



LAGRANGIANS



GENERALIZED HODGE DUALITY

To construct Lagrangians, we need a suitable inner product. Generalized Hodge star:
_ 1 D—p—q T
(xw)p-p,0—q = (D—p—g)! n Wa,p -
The combination ** (of standard Hodge) is different than x (it also encodes traces) :
min(p,q) (—1)"

*xw=x%(—1)° Z (2 n"tr"w, (e=(O-1)p+q) +pg+1).
n=0 '

A symmetric inner product of some w and w’ is then simply defined by [, W W'



KINETIC AND MASS TERMS

Liin(wp,q) = dw *dw. Lmass(wp,q) = M wxw.
0,x 0,x

« For differential forms (q = 0) ~~ p-form electrodynamics.
« For p = g = 1 ~ linearized Einstein-Hilbert / Fierz-Pauli:

1 1 1

. 1
Ekin - _Zh#uDhV‘FE E

28,0, 0" — = h,, 8" O\h* + 7 hur R
Lmass = m2 (h;whﬁw - (hMH)2> .
« For p=2,9 =1, the gauge theory for the hook Young tableaux curtright ‘80
Lin = % (auwwua“w”““ - 28Ho.)‘”’‘”6%.),\1,‘,€ - 8uw"”‘“5‘)‘wm‘>\ -

—4wuy‘”8'€8’\wwp\ — 26,4w,,“‘"6”wA,i|A + 2(9le,“‘"8'€w)‘np\) ,

2
Emass = m (w”"lpww‘p — 2w“wu) . cf. Bergshoeff, Fernandez-Melgarejo, Rosseel, Townsend '12



TENSOR GALILEONS AS ‘‘GENERALISED KINETIC TERMS''

Define w(p1) = w (dd w) . For any bipartite tensor in any D, universal interactions:
Nmax
Laal(wp,q) = Z dw(nt1) * dw(ni1y
n=0

Single-field, 2nd-order (polynomial) EOMS. Note: only even field appearances here.

When p = q (scalars, gravitons, (2, 2)s &c.), an enhancement to odd fields

Nmax
Leal(wpp) = Laa(w) + Z/ P+1dw(n * dw(nyny = Z/ D—(p+1)n = W) -

straightforward to do multi-field, up-to-2nd-order EOM /  also to find expanded versions (but they will be very complicated)
cf. Nicolis, Ratazzi, Trincherini '08; Deffayet, Deser, Esposito-Farese '09-'10; ...

also for higher spins, with suitable generalised Hodge; yields the formulation of Francia, Sagnotti ‘02 and nonlocal Galileons



GENERALISED GLOBAL SYMMETRIES



GLOBAL SYMMETRIES & 'T HOOFT AMOMALY

Gaiotto, Kapustin, Seiberg, Willet *14; Cordova, Dumitrescu, Intriligator '18

« Free Maxwell theory has two 1-form U(1) global symmetries (electric/magnetic)
+ The conserved currents are the 2-forms: F and *F give topological operators, act on Wilson/t Hooft
+ Background fields that can couple to the currents are two 2-forms Be and B
+ They have background gauge transformation: Bg/y — Be/m + dAe/m
+ Electric description: U(1) gauge field A, which shifts by Ae but is inert under magnetic

# Action coupled to background fields we can add the @ term too

S= /(F Be) A x(F — Be) + /Bm/\F

< Under background gauge transformations: S — S + i J Ne A dBn.
+ Mixed U(1)e-U(1)m 't Hooft anomaly via inflow from 6D polynomial dBm A dBe
<+ In the dual theory the currents are exchanged, the anomaly is reproduced

« Anomaly matching also for scalars, multiple fields, nonlinear theories ...
Th Ch, Karagiannis, Ranjbar '22
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GRADED ISOMETRIES

Philosophy of Generalised Global Symmetries: the photon is a NG boson.
Nonlinear sigma models were introduced for (scalar) NG bosons. Gell-Mann, Levy 60
Q-manifold Philosophy: Generalised sigma models with graded coordinates.
In 2D NLSMs global symmetries are identified by background isometries:
§X =ple) iff £,G=0 and L,B=da.
Similarly when the couplings depend on derivatives to0 (see Heisenberg pion fireball model):
§X =ple) and &dX =¢(e) iff LyG=0 and LyB=dg,

with V in the 1-jet and L the 1-jet Lie derivative.

For Abelian 1-forms in 4D, same-yet-graded result! a graded Lie derivative along a graded VF



-]

OPEN QUESTIONS

Is the graviton a Nambu-Goldstone boson for some global symmetry?

for a proposal on this see Hinterbichler, Hofman, Joyce, Mathys '23
Does linGR have a 't Hooft anomaly? How does it inflow?

What are the topological operators and the extended observables then?

tensor gauge theories relevant elsewhere too, e.g. physics of reduced mobility quasiparticles (fractons, lineons, planons)
Is there a Coleman-Mermin-Wagner theorem for gravitons?

Do mixed symmetry tensors gauge theories arise as bg fields for such GGSs?
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