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Introduction

@ Already in 1960s, Kibble and Sciama proposed a new theory of
gravity, the Poincaré gauge theory (PG), based on gauging the
Poincaré group of spacetime symmetries.

@ PG is characterized by a Riemann-Cartan (RC) geometry of
spacetime, in which both the torsion and the curvature are
essential ingredients of the gravitational dynamics.

@ Nowadays, PG is a well-established approach to gravity,
representing a natural gauge-field-theoretic extension of general
relativity (GR).

@ In the past half century, many investigations of PG have been
aimed at clarifying different aspects of both the geometric and
dynamical roles of torsion. In particular, successes in constructing
exact solutions with torsion naturally raised the question of how
their conserved charges are influenced by the presence of torsion.
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Introduction

@ We shall reconsider the notion of conserved charge in the
Hamiltonian formalism, as it represents the most natural basis for
the main subject of the present talk, the influence of torsion on
black hole entropy.

@ The expressions for the conserved charges in PG were first found
for asymptotically flat solutions. In the Hamiltonian approach to
PG the conserved charges are represented by a boundary term,
defined by requiring the variation of the canonical gauge generator
to be a well-defined (differentiable) functional on the phase space.

@ A covariant version of the Hamiltonian approach, introduced later
by Nester, turned out to be an important step in understanding the
conservation laws. This was clearly demonstrated by Hecht and
Nester, in their analysis of the conserved charges for
asymptotically flat or (A)dS.

((GUTEX WS IE ntropy of black holes coupled to a scalar fielc 04.04.2024. 5/48



Introduction

@ Despite an intensive activity in exploring the notion of conserved
charges in the generic four-dimensional (4D) PG, systematic
studies of black hole entropy in the presence of torsion have been
largely neglected so far.

@ One should mention here an early and general proposal by Nester
which did not prove to be quite successful.

@ Later investigations were restricted to EC theory, which is certainly
not sufficient to justify any conclusion on the general relation
between torsion and entropy.

@ In 3D gravity, black hole entropy is well understood for solutions
possessing the asymptotic conformal symmetry.

@ The physics of black holes is an arena where thermodynamics,
gravity, and quantum theory are connected through the existence
of entropy as an intrinsic dynamical aspect of black holes.
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Introduction

@ In the 1990s, understanding of the classical black hole entropy
reached a level that can be best characterized by Wald’s words:
“Black hole entropy is the Noether charge" .

@ The question that we wish to address is whether such a
challenging idea can improve our understanding of black hole
entropy in PG.

@ We constructed the canonical gauge generator in the first order
formulation of PG, which improved form is used to obtain the
variational equation for the asymptotic canonical charge, located
at the spatial 2-boundary at infinity.

@ Following the idea that “entropy is the canonical charge at
horizon," we are led to define black hole entropy by the same
variational equation, located at black hole horizon.

@ The differentiability of the gauge generator guarantees the validity
of the first law of black hole thermodynamics.

((GUTEX WS IE ntropy of black holes coupled to a scalar fielc 04.04.2024. 7/48



Introduction

Notations and conventions

@ Our conventions are as follows.

@ The greek indices (u,v,...) refer to the coordinate frame, with a
time-space splitting expressed by p = (0, «).

@ The latin indices (/,/, ... ) refer to the local Lorentz frame.

@ ¥ is the orthonormal tetrad (1-form), e; is the dual basis (frame),
with e; | 9% = 6X, and the Lorentz metric is n; = (1, -1, -1, —1).

@ The volume 4-form is é = 92919293, the Hodge dual of a form « is

*ar, With *1 = €, and the totally antisymmetric tensor is defined by
*(19/19j19m19n) = Ejjmn: where gg123 = +1.

@ The exterior product of forms is implicit.
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PG dynamics

@ Basic dynamical variables of PG are the tetrad field ¥’ and the
spin connection w’ (1-forms), the gauge potentials related to the
translation and the Lorentz subgroups of the Poincaré group,
respectively. The corresponding field strengths are the torsion
T/ = d¥' + W 9™ and the curvature R = dwi + W/ pw™ (2-forms).

@ Varying the gravitational Lagrangian Lg = Lg(¥', T', RY) (4-form)
with respect to ¥ and w” yields the gravitational field equations in
vacuum. After introducing the covariant field momenta,

H; := 0Lg/0T' and Hj := 0Lg/0RY, and the associated
energy-momentum and spin currents, E; := dLg/09" and
Ej := 0Lg/0w", the equations read

§9':  VHi+E =0, (2.1a)
sl VH;+Ej=0. (2.1b)
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PG dynamics

@ Assuming the gravitational Lagrangian Lg to be at most quadratic
in the field strengths and parity invariant,
3 1 8
Lg=—*(aR+24)+ T > *(a)\"T) SF > (b MRy),

n=1 n=1

the gravitational field momenta take the form

*(am™T)),  Hy = —2ay*(9'?) + Hj,

M

H =2

3
IR

*“(bn (Ry).

hE

H,{j =2

n=1

@ Here, (ay, am, bn) are the Lagrangian parameters, with 167ray = 1,
A is a cosmological constant, and (™T; and ("R; are irreducible
parts of torsion and curvature.
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PG dynamics

A black hole can be described as a region of spacetime which is
causally disconnected from the rest of spacetime.

The boundary of a black hole is a null hypersurface, known as the
event horizon.

Let us consider a black hole characterized by the existence of a
Killing vector field ¢. A null hypersurface to which the Killing vector
is normal, is called the Killing horizon (K). As a consequence,

£ = 9w étE” = 0 on K. The gradient 8M(52) is also normal to
and it must be proportional to &,

0u(€%) = =258, (2.2)

where the scalar function « is known as surface gravity.

One can show, without making use of any field equations, that for
a wide class of stationary black holes (systems in “equilibrium"),
the Killing horizon coincides with event horizon.
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PG dynamics

@ The essential property of surface gravity is expressed by the
zeroth law of black hole mechanics: For a wide class of stationary
black holes, surface gravity is constant over the entire event
horizon.

@ Since null geodesics and Killing vector fields are purely metric
notions, they can be directly transferred to PG. Thus, the form of
surface gravity and the associated zeroth law of black mechanics
are also valid in PG.

@ The calculation of x should be done in coordinates that are well
defined on the outer horizon, such as ingoing Edington-Finkelstein
coordinates, where the metric reads

ds® = N?av® —2dvdr — r?dQ?, N=N(r), (2.3)
while the definition (2.2) of surface gravity takes the form

ON? =2k (2.4)
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Hamiltonian analysis

@ In PG, the conserved charges are determined as the values of the
(improved) canonical generators of spacetime symmetries,
associated to suitable asymptotic conditions.

@ The canonical procedure is simplified by transforming the
quadratic Lagrangian into the “first order" form

1 ;
Le=T'1i+ ERUPU = V(' 7, pj) , (3.1)

where the gravitational potentials (¢, w) and “covariant
momenta" (7;, pjj), are independent dynamical variables.

@ The potential V is a quadratic function of (7;, pj;) which ensures
the on-shell relations 7; = H; and p; = Hj.

@ In the tensor formalism, the Lagrangian density reads

, 1 : 1o ¥
EG = —ZEMVAP <TIMVT[')\p + ZRUquI'j/\p> - V(ﬁ7 T, p) . (32)
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Hamiltonian analysis

@ The gravitational field equations (in vacuum) are obtained by
varying LG with respect to the independent dynamical variables

19’u,w u T and /)luv'

oV

vu(*)TiW ~ 55 = 0, (8.3a)

20, H g + Vi =0, (3.3b)

i Vg (3.3c)
OTipw

_giw _ Y (3.3d)
apijuy

where we use the notation )72 := TerrAer;, | and similarly for
(*)Pijw/s (%) Tipv and () Riinv |
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Hamiltonian analysis

@ Starting with the field variables ¢* = (¢/,,,w" ., 7/, 7 ,,,) and the
corresponding canonical momenta wg = (7*, m*, P*", Py#), one
obtains the following primary constraints:

¢ =7’ ~0, ¢ = m" + Wt~ 0,
1
¢ = m° ~0, ma:wﬁ+§“%fazm

P ~0), P ~0. (3.4)

The canonical Hamiltonian is found to have the form

. 1 . . 1 " -
He := 0'oH; + SwloM + Tioa ) T0% + ép,-,-oOé(*)R’fo"‘ +V,

Hj = Vo P70
7‘[,‘/ = 229[/'&(*)7,']0& + Va(*)p,'joa . (35)
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Hamiltonian analysis

@ The total Hamiltonian reads

, 1 . 1 . 1 .
Hr = He + Uy + EUUWU“ T EV’WPIW T ZvuuuPi/W )
where u’s and v’s are canonical multipliers.

@ The consistency conditions of the sure primary constraints
produces the secondary constraints

N oy .

Hi 2:7'[/—1-87[0%0,7'[,7 =H;~0,

Fi0a . (x) Ti0a W 0, Rida . () gida W 0,
8TiOoz a:01]'004

which correspond to certain components of the field equations
(3.3).
@ The remaining primary constraints are second class.
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Hamiltonian analysis

@ We can construct the corresponding DB and use them in the
consistency procedure on the reduced phase space:

{ﬁiom Tj,b"y}* = 5/[50046'\/ ) {wijm pk/ﬁ'y}* = 6[[:5;]50046'\/ .

@ The form of the total Hamiltonian is simplified:

. 1 . . 1 .
Hr = Hc + U’07T,'O + Eu’fomjo + V'ogp,'oﬁ + év”oﬁP,-jOfB . (3.6)

@ In terms of the secondary constraints H, reads

A . 1 o

@ A phase-space functional G is a good gauge generator if it
generates the correct gauge transformations of all phase-space
variables.
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Hamiltonian analysis

@ Relying on an explicit construction of G in 3D PG, we display here
its generalization to 4D:

Gl¢, 0] = /z 0PX (Gr + Go) . Gr = pllimy® + 0T My,

Gy = &H (ﬁiumo + %wijuw,jo + TiugPioﬁ + %pijuﬁP;joﬁ) + &Py,
Pu =9 Hi+ %w"f'u’H,-,- + 7T + %p"f,wfa,-joﬁ

+(0,0"0)m° + %(auw’fo)mjo + (0,7 08) PP + %(8Mpijoﬁ)P,'/OB
—0p (Tioupioﬁ + ;p”oupq'o'8> 7

My = Hy+ 2 (Vomp° + wFomig® + 70y Py + #¥i0, Peg® ) -
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Entropy and torsion

@ The Hamiltonian formulation of gravity is based on the existence
of a family of spacelike hypersurfaces ¥, labeled by the time
parameter t. Each ¥ is bounded by a closed 2-surface at spatial
infinity, which is used to define the asymptotic charge. When % is
a black hole manifold, it also possesses an “interior" boundary, the
horizon, which serves to define black hole entropy.

@ In PG, conserved charges are closely related to the canonical
gauge generator G. Since G acts on dynamical variables via the
PB (or DB) operation, it should have well-defined functional
derivatives. If G does not satisfy this requirement the problem can
be solved by adding a suitable surface term I, located at the
boundary of ¥ at infinity, such that G = G + Iy is well defined.
The value of I', is exactly the canonical charge of the system.
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Entropy and torsion

@ Any particular solution of PG is characterized by a set of
asymptotic conditions. Demanding that local Poincaré
transformations preserve these conditions, one obtains certain
restrictions on the Killing-Lorentz parameters. The restricted
parameters define the asymptotic symmetry, which is essential for
the existence of conserved charges.

@ We consider the variation of the gauge generator
5G = / BX(5Gy +5Go) .
x

A . 1 .
0Gy = ¢ [ﬁ',ﬁHi + 5&)”“(5%/] + TiuadT 0% + §pijua(SRan] ,
1 .
0Gy = 50"6H; + R, (4.1)
where § is the variation over the set of asymptotic states, and R
denotes regular (differentiable) terms.
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Entropy and torsion

@ To get rid of the unwanted §9,,¢ terms which spoil the
differentiability of G, one can perform a partial integration,

1 . 1. .

0Gy = §5°a578a{§“ [19’“57',37 + Ewljuépffﬁ’y + 277#7519’5
j 1 oa 1

0075 ] |+ R, 6Ge = 590, 5076053,

@ Going over to the notation of differential forms we get

5G= 6T+ R, 6Tww:=¢ 0B, (4.2a)
Seo
. . 1 ) 1.
6B := (£ | 9")oH; + 69 (€| H) + é(éj w’/)éH,-j + Eéw’/(éj Hj)
+%9’/5H,-, , (4.2b)

where S is the boundary of ¥ at infinity.
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Entropy and torsion

@ If the asymptotic conditions ensure ', to be a finite solution of the
variational equation (6.14), the improved gauge generator

G:=G+ T (4.3)

has well-defined functional derivatives. Then, the value of G is

effectively given by the value of I, which represents the

canonical charge at infinity.

(a1) Inthe above variational equations, the variation of I, is defined
over a suitable set of asymptotic states, keeping the background
configuration fixed.

@ Nester and co-workers succeeded to explicitly construct a set of
finite expressions I,. Although their approach yields highly
reliable expressions for the conserved charges, we shall continue
using the variational approach (6.14), as it can be naturally
extended to a new definition of black hole entropy.
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Entropy and torsion

@ In order to interpret black hole entropy as the canonical charge on
horizon, we assume that the boundary of ¥ has two components,
one at spatial infinity and the other at horizon, 0~ = S, U Sy.

@ Now the condition of differentiability of the canonical generator G
includes two boundary terms, the integrals of 6B = 6B(&, ) over
Ss and Sy:

56:—74 5B+ ¢ 6B+R. (4.4)
Seo SH

@ Here, as we already know, the first term represents the asymptotic
canonical charge,

Moo = / 5B. (4.5)
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Entropy and torsion

@ The second one defines entropy S as the canonical charge on
horizon,

oy = 0B. (4.6)
SH

(a2) The variation of I'y is performed by varying the parameters of a
solution, but keeping surface gravity constant.

@ Explicit form of entropy depends on two factors: dynamical and
geometric properties of a theory and specific structure of the black
hole.

@ For stationary black holes in GR, the entropy formula (4.6) takes

the well-known form
ory=T6S, (4.7)

where T = k/27 represents the temperature and S = 7r2 is black
hole entropy.
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Entropy and torsion

@ The gauge generator G is regular if and only if the sum of two
boundary terms vanishes,

oTo — My =0, (4.8)

which is nothing but the first law of black hole thermodynamics.
Thus, the validity of the first law directly follows from the regularity
of the original gauge generator G.

@ In the framework of PG, the conserved charge is a
well-established concept which has been calculated for a number
of exact solutions. In contrast to that, much less is known about
black hole entropy.

@ We shall now test our definition of black hole entropy and the
associated first law, on three illustrative examples from the family
of Schwarzschild-AdS solutions, Kerr-Newmann AdS solutions
and solutions with scalar hair.
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Teleparalell SAdS

@ Teleparallel gravity (TG) is a subcase of PG, defined by the
vanishing Riemann-Cartan curvature, R/ = 0. Choosing the
related spin connection to vanish, w/ = 0, the tetrad field remains
the only dynamical variable, and torsion takes the form T’ = dv'.
The general (parity invariant) TG Lagrangian has the form

L= ag Ti* (31 (1)7-, + a (2)T, + as (S)T,> . (5.1a)
@ In physical considerations, a special role is played by a special
one-parameter family of TG Lagrangians, defined by a single
parameter v as
a=1, a = -2, 83:—1/2—1—’}/. (5.1b)

@ This family represents a viable gravitational theory for
macroscopic matter, empirically indistinguishable from GR.
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Teleparalell SAdS

@ Every spherically symmetric solution of GR is also a solution of
the one-parameter TG. In particular, this is true for the
Schwarzschild-AdS spacetime. Since ®)T; = 0, the covariant
momentum H' does not depend on ~:

2a
0_ o 103 : 243
0 cos(8)y' ¥° — 2Nsin(0)9<9°| ,
H1 _ 280 COS(Q) 1901937 H2 _ 23() (rN/ + N)190'l93
rsin(0) r
3 _ 230 / 092
H®° = —(rN" + N)9" v (5.2)

@ The energy of the Schwarzschild-AdS solution in TG is

E—=m. (5.3)
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Teleparalell SAdS

@ Our approach to entropy yields (integration implicit)

9't6H; = [NSHo]
V'S Hy = [0?5Hop + 035 Hay ]

= —16mag[N6(Nr)] =0,

ry
2
= 8rag - IQ(S(Q_),

where we used NN’ = « and [NSN],, = 0. Thus, with 16way =1,
one obtains
Ty =T8S, S=nar2. (5.4a)

The identity 26m = xdr2 confirms the validity of the first law

0E = T6S. (5.5)
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KN-AdS black hole

PG-Maxwell system

Let us extend our investigation of entropy by introducing Maxwell
field as a matter source for gravity (PG-Maxwell system).
The analysis is focussed on exploring thermodynamic properties
of the generalized KN-AdS black hole, constructed by Baekler et
al. in the late 1980s.
Our physical system now contains also the Maxwell field
characterised by the field strength F = dA (2-form), where A is the
electromagnetic gauge potential (1-form) and dynamical
properties of the PG-Maxwell system are defined by the total
Lagrangian

L=Lg+ Ly, (6.1)

where Ly := 4a; (-~ F *F) describes the Maxwell field interacting
with gravity.
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KN-AdS black hole

@ The field equations now read

89 VHi+E=-1, (6.2a)
sl VHj+Ej=0, (6.2b)
JA dH =0, (6.2c)

where 7; := dLy /99’ is the Maxwell energy-momentum current ,
the spin current vanishes, o := 8LM/8w’7 =0 and
H:=0Ly/0A = —4a*F is the electromagnetic covariant
momentum.

@ Asymptotic charges and entropy of a PG-Maxwell black hole are

determined by the boundary integral which contains an additional
contribution stemming from Maxwell field

6Bm(&) := (€1 A)OH + (6A)(E | H). (6.3)
@ /By is again obtained from the canonical generator.
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KN-AdS black hole

Metric, tetrad and torsion

@ The metric of a KN-AdS black hole in Boyer-Lindquist (BL)
coordinates has the form

2
ds? = %(dt—ké sin20d<p> 7 Edr?— v d02 f —5 sin 29 adt—i-(;az) 90 ,
p a PP

A(r) = (r? + &)(1 +)\r2) —2(mr—q?), a:=1-)\&,
p2(r,0) ;= r® 4+ @ cos? 4, f(0) :=1— \a®cos? . (6.4)

@ Here, m, a and g are characterizing conserved charges of the
solution, and A = —A/3ap.

@ The orthonormal tetrad is chosen in the form

ﬁO:N(dtJrEsinZGdcp), =T #—pas,
(6

N?
sind

#=""]a dt+(r2232)dgp}, N=vA/p, P=p/Ni. (65)
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KN-AdS black hole

@ The larger root of A(r) = 0 defines the outer horizon, and the
angular velocity and surface gravity have the GR form

ao a(1+Ar2)
= —->%, Q = + Aa = 9 66
“r r2 4 & T r2+a? (6.6)
L r2 +3Ar} + \ar2 — a2 — 2¢° Ay — / 9293 — 47 (r2 + a2) .
2r+(r-%— + 32) 7 r+ a

@ For KN-AdS black holes in PG, the ansatz for torsion is formally
the same as for the Kerr-AdS case
0 1 1 0,91 243 1 42 — 43
TO— T :N[—vﬂm —2v4q919]+m[v219 92 + Vg 19},
1 1
2 _ 1 —q2 - 93 3._ [ —q2 ~ 43
T .—N[V579 92 1 Vg0 ﬁ},r : N[ Va9~ 92 + Vs 79], (6.7)

where ¥~ = 99 — 91 and the torsion functions V,, are modified by
the presence of the electric charge parameter.
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KN-AdS black hole

Connection and curvature

@ The Riemann-Cartan connection can be expressed as
wl = ol + K7, (6.8)

where &7 is Levi-Chivita (Riemannian) connection and K7 is the
contortion 1-form, implicitly defined by the relation T/ = K’ b*.

@ The curvature 2-form R/ = dw’ + w'xw¥ has only two
nonvanishing irreducible parts:

ORI = N9y, ()RAc — %(mr — @2 v°. (6.9

The quadratic invariants (Euler, Pontryagin and Nieh-Yan) are
given by
g = (1/2)ejmnRYR™ = *RppR™ = 12)%¢,
lp:=R'R;j=0, Izw=TT -Rbb=0. (6.10)
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KN-AdS black hole

PG-Maxwell field equations

@ The Maxwell potential in a KN-AdS spacetime is

Qel 0_ _ Qel
A=— 9 dt + = sin? 0d 6.11
A P2 ; (dt+ s 0dlp). 610
where ge is the electromagnetic charge parameter.

@ The explicit calculation shows that basic dynamical variables
(', w", A) of a KN-AdS black hole solve the PG-Maxwell field
equations if the Lagrangian parameters (an, bn, A) and the
solution parameters (), g, ge) satisfy

2a; +a> =0, ay—ai— A(bs +bg) =0,
38\gy +4=0, g2 =2¢°. (6.12)
@ The electromagnetic charge parameter g, differs from the metric

charge parameter q. However, none of them coincides with the
asymptotic Maxwell charge.
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KN-AdS black hole

Asymptotic boundary terms

@ The asymptotic values of energy and angular momentum are
defined by the boundary term §B(¢).

@ Let us mention that Carter and Henneaux and Teitelboim
demonstrated that the asymptotic metric of Kerr-AdS spacetimes
cannot be properly described in BL coordinates. They found a new
set of coordinates in which this deficiency is brought under control.
However, our variational approach allows a simpler procedure, in
which only the subset (¢, ¢) of the BL coordinates is transformed

T=t, ¢ =p—Aat. (6.13a)

@ Consequently. the components of metric transform as

97p = Gty + Gpp s Q+ = <gT(’D> = w4 + aa (613b)
oo/ r,
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KN-AdS black hole

Angular momentum and energy

@ It is interesting to note that the contribution of the Maxwell field in
the expression 6B(¢), yields vanishing boundary terms at infinity,
but not at horizon.

@ The angular momentum is defined by §E, := 6l (9,,). By
summing up the nonvanishing contributions one obtains

5E, = 16mas( 1y ). (6.14)
«
@ Going over to energy, we obtain
m _/1 m
SE; = 1674y [25(()) 5(a)] .

@ The result is not J-integrable but, as we mentioned above, it can
be corrected by moving to the untwisted coordinates

0Er = 8E; + \adE, = 167ra15<ﬂ2> . (6.15)
(6%
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KN-AdS black hole

Entropy

@ First we analyse the PG part of the boundary term at horizon, oI,
where the Killing vector ¢ is given by

€= 01— Qp0y = 0t — wid,. (6.16)

@ This part defines the black hole entropy. After very lengthy
calculation we get

2
PG _ ry + _
(6T )PC = 8rray né( - ) ~ 58,
2 2
S .= 167ra17r(r+;“3), (6.17)

where T := x/27 is the temperature.

@ Thus, entropy is as the conserved charges proportional to the GR
value.
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KN-AdS black hole

Maxwell boundary term and the first law

@ The asymptotic electric charge Q can be defined by

Q=- | H=4a [ (- Rcoso)t?t® = 16ray qe
Soc Soo P*
(6.1 8)
@ The electric potential ¢ is defined by
_ Qelt 0 & Qelt
PAN" Sl 2 4 a2 (6.19)
@ Then, the Maxwell contribution on horizon has the form
(ST )M = AcdH + (0A)H: = AcdH = 46Q. (6.20)

@ Combining this relation with the already obtained results, one can
immediately conclude that the first law 6y = 6T, takes the form

TS+ ®3Q = 6Er — Q. 6E,,. (6.21)
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MTZ black hole

Dynamics and boundary terms

@ We shall now extend the investigations to hairy black holes. Our
attention is focussed on the Martinez-Teitelboim-Zaneli (MTZ)
solution of GR as a characteristic representative of the family of
Riemannian black holes with scalar hair.

@ The Lagrangian L (4-form) describes the scalar matter coupled to
the gravitational field,

L:LG—i-LM, (71)
1
Ly = §d¢(*d¢>)+*v,
where V = V(¢) is a self-interaction potential.
@ The covariant momentum associated to the scalar fiel reads

- Ol
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MTZ black hole

@ The field equation can be written in a compact form

&9 . VH+E =-1, (7.3a)
sl : VHj— (biH; — bjH;) =0, (7.3b)
§p :  —dHy+0,"V =0. (7.3c)

Here, E; := aLG/(%“' and 7; := 8LM/619" are the gravitational and
matter energy-momentum currents .

@ The Hamiltonian approach to black hole thermodynamics is based
on the already mentioned ideas. The related boundary integral
contains a contribution related to a scalar field

5Bu() = —(50)(E ] Hy). (7.4)

@ For static black holes, the Killing vector ¢ has the form £ = 6.
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MTZ black hole

The MTZ black hole

@ In the Riemannian limit T; = 0, hence H; = 0, the equation (7.3b)
takes the form VH;; = 0, which is, generically, not satisfied by the
MTZ spacetime; the MTZ black hole is a solution of PG only in two
complementary subcases:

(c1) in GR, where T’ = 0 and moreover, b, = 0;
(c2) in the teleparallel gravity, where R = 0.

@ Riemannian geometry of the MTZ black hole is determined by the

metric
ar? r(r4+2Gm)
ds? = CZ<N2dt2 9 r2d02> c?.— et
N2 ) (r+Gm) "’
2
2. _ I Gm\2
N =5 (1+ - ) , (7.5)

where do? is the metric of a 2-dimensional manifold X with
constant negative curvature, rescaled to —1.
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MTZ black hole

@ The manifold X is locally isometric to the hyperbolic manifold H?,
the metric of which can be written in the form

do? = dp? + sinh? pdy?, (7.6)

where p € [0,00) and ¢ € [0, 27).

@ Since H? has infinite area, which is a serious obstacle in
thermodynamic considerations, ¥ is chosen to be of the form
Y = H?/I', where T is a discrete subgroup of SO(1,2), the
isometry group of H2. This choice ensures the area of X to be
finite.

@ The asymptotic form of N? suggests that the parameter m is a
measure of the black hole mass, whereas its zeros determine the

event horizon:
Y4 4Gm
= — — . 7.7
=gz (1 +4/1+ 7 > (7.7)
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MTZ black hole

@ We choose the orthonormal tetrad as

90 = Adt, 191:%, 92 = Ddp, 93 = Dsinhpdop,
A:=CN, B:=N/C, D:=Cr. (7.8)

@ The horizon area takes the form
Ay = / 0293 =4(2ry, — o, o= / dpsinhpdyp,
H H

while surface gravity and the black hole temperature are

1 4Gm 1 K
K= BarA|r+:z 1+T:€—2(2r+—£), T = —271_.
@ The Riemannian spin connection reads
A D cosh 6
o1 _ % 0 1c _ c 23 _ 3
W= B =B T = ame T 79

where ¢ = (2, 3).
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MTZ black hole

@ Adopting the notation 1 := Gm, the solution of the scalar field
equation reads

._ p _ k2@
¢ = \/Ratanh(r+u), V(9) := + sinh <\/R> (7.10)
@ The value of the normalization constant k is fixed by gravitational
field equations
3a _ 3

A+ =0,  k=12a=,_. (7.11)

@ When H; = 0, the general boundary term is reduced to

3B() = J(€) oy + 2oui(e ] 5Hy) — (36)(€ | Hy), (7.12)

1
2
where ¢ = 9;. Hence, energy and entropy of the MTZ black hole
are determined by calculating the corresponding boundary
integrals ol o, and 6T, respectively.
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MTZ black hole

Energy

@ The gravitational and scalar field contributions to the boundary

term are
pr | 4p?
5BG = 1230 (—624—62) U5M+43005‘UJ,
_ pr 4P
6B, = kon(Y5 — =)o

Both terms are divergent, but for 4ay = 3/4, their sum yields the
finite expression for energy:

Moo i= 5BG+5B¢:i—“a = JE= 47r5“ (7.14)
>
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MTZ black hole

Entropy and the first law

@ Since 6By is proportional to the tetrad function B, it vanishes on
horizon. Hence, the only nontrivial contribution comes from §Bg,

(o
oy = /5BG(r+) = Eéu' (7.15)
@ Using the explicit expressions for Ay and T, one can derive the
identity
ory=T6S, S = @, (7.16)
4z
which identifies S as entropy.
@ These results imply the validity of the first law,
M=y = O0E=TJS. (7.17)
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Conclusion

@ We investigated the notion of entropy in the general
four-dimensional PG. Our approach was based on the idea that
black hole entropy can be interpreted as the conserved charge on
horizon.

@ We constructed the canonical generator G of gauge symmetries
as an integral over the spatial section ¥ of spacetime, which has
to be a regular (differentiable) functional on the phase space. The
regularity can be ensured by adding to G a suitable surface term
I defined on the boundary of X at infinity.

@ The form of ', is determined by the variational equation and its
value defines the asymptotic charge.

@ For a black hole solution, ¥ has two boundaries, one at infinity and
the other at horizon. The condition of regularity of G includes two
boundary terms, ', and I'.
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Conclusion

@ The new boundary term I'y, defines entropy as the canonical
charge on horizon. The regularity of G represents just the first law
of black hole thermodynamics.

@ For a number of black holes in PG:

e Riemannian Schwarzschild-AdS (SAdS)

@ Schwarzschild-AdS solutions with torsion (Baeckler) solution

o Teleparallel Schwarzschild- AdS

o Kerr

e Kerr-AdS black holes with or without torsion,
it was found, somewhat unexpectedly, that entropy retains its area
form, up to multiplicative factor. Also the first law retains the
standard form.

@ The analysis of the Kerr-Newmann solution led also to the
expected results as well as the investigation of the black holes
with scalar hair.
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