Remarks on two "solvable" ncQFT models

Quantum + Fuzzy:
Workshop in honour of the birthday of
Professor Maja Buric

Harald Grosse

Faculty of Physics, University of Vienna

Happy Birthday Maja

Congratulations Maja

- Congratulations
- many contributions
- many publications
- many coworker
- a nice atmosphere
- Fuzzy black hole, fuzzy de Sitter
- Fuzzy cosmology

Many collaborations Maja +...

- John, Voja
- Latas, Zoupanos
- Trampetic, Nenadovic
- Prekrat
- more than 20 more
- renormalization questions Maja + Voja ...
- Maja + M. Wohlgenannt!!! curvature!!!
- Maja + HG + John : Gauge model...

Quartic Model

- Φ^4 on R_{Θ}^4 nonren.! add box term...ren.!
- symmetric coupling leads to a matrix model
- $lacktriangleright eta_{\lambda} = 0$
- nonperturbative ren.
- 2 Ren-const Z, m²
- WI+SD Vincent,... solvable, NONTRIVIAL!
- blobbed top. rec.

review: J Brahnal+HG+A Hock + R Wulkenhaar

2110.11523

Deform Euclidean \mathbb{R}^4

Formulation

 ϕ^4 on nc \mathbb{R}^4 , $[\hat{x}^{\mu}, \hat{x}^{\nu}] = i\theta^{\mu\nu}$ antisymmetric, or star product

$$(a*b)(x) = \int dy \int dka(x + \frac{\theta k}{2})b(x + y)e^{iky}$$

 ϕ^4 action

$$S = \int dp (p^2 + m^2) \phi_p \phi_{-p} + \lambda \int \prod_{j=1}^4 (dp_j \phi_{p_j}) \, \delta(\sum_{j=1}^4 p_j) e^{-i \sum_{i < j} p_i \theta p_j}$$

Ribbon graphs, not ren., implied by IR/UV mixing Possible solution: modify action

Theorem: H. G. + R. Wulkenhaar

Theorem: Action is pert. and nonpert. ren

$$S = \int d^4x \Big(\frac{1}{2}\partial_{\mu}\phi \star \partial^{\mu}\phi + \frac{\Omega^2}{2}(\tilde{x}_{\mu}\phi) \star (\tilde{x}^{\mu}\phi) + \frac{\mu_0^2}{2}\phi \star \phi + \lambda\phi \star \phi \star \phi \star \phi\Big)(x)$$

 $\beta_{\lambda} = 0$ at $\Omega = 1$, flow bounded, L. ghost killed! use SD equation and WT-I

 $\lambda[\Lambda]$ diverges in comm. case

- perturbation theory valid at all scales!
- non-perturbative construction "done"!

Congratulations Maja

Solution Φ_{Θ}^4 : SD and WT identities

Regard the planar two-point function G_{ab} as evaluation of a holomorphic function $G(\zeta, \eta)$ (for genus zero): (*

$$(\zeta + \eta + 2c)ZG(\zeta, \eta) = 1 - \frac{\lambda}{N} \sum_{k=1}^{N} \left(Z^2G(\zeta, \eta) \ G(\zeta, E_k) - \frac{ZG(E_k, \eta) - ZG(\zeta, \eta)}{E_k - \zeta} \right)$$

Non-linear equ., hard to solve. Solved in D=2 E. Panzer + R. W, Divergence problem: adjust $Z(N,\lambda)$ and $c(N,\lambda)$ to achieve limit $N\to\infty$. Start from a holomorphic function J (to be determined) and define for

appropriately chosen pre-images $J(\varepsilon_k) = E_k$ another holomorphic function \mathcal{G} by $\mathcal{G}(z, w) = G(J(z), J(w))$.

The key step is to relate J and G by

$$J(z) + 2c + \frac{\lambda}{N} \sum_{k=1}^{N} ZG(z, \varepsilon_k) + \frac{\lambda}{N} \sum_{k=1}^{N} \frac{1}{J(\varepsilon_k) - J(z)} = -J(-z).$$

$$(J(w) - J(-z))ZG(z, w) = 1 + \frac{\lambda}{N} \sum_{k=1}^{N} \frac{ZG(\varepsilon_k, w)}{J(\varepsilon_k) - J(z)},$$

Solution Φ_{\ominus}^4 , finite dof

When N is finite and fixed, J is a rational function with N+1 pre-images:

Theorem

Construct 2N functions $\{\varepsilon_k(\lambda), \varrho_k(\lambda)\}_{k=1,...,N}$ as implicitly defined solution of the system

$$E_k = J(\varepsilon_k), \qquad \frac{1}{\varrho_k} = J'(\varepsilon_k), \qquad \text{where} \quad J(z) = z - \frac{\lambda}{\mathcal{N}} \sum_{j=1}^d \frac{\varrho_j}{\varepsilon_j + z}$$

and $\lim_{\lambda \to 0} (\varepsilon_k, \varrho_k) = (E_k, 1)$. (*) is solved for c = 0 and Z = 1 by $G(\zeta, \eta) = \mathcal{G}(J^{-1}(\zeta), J^{-1}(\eta))$, where \mathcal{G} is the rational (and symmetric) function

$$\mathcal{G}(z,w) = \frac{1 - \frac{\lambda}{N} \sum_{k=1}^{N} \frac{1}{(J(z) - J(\varepsilon_k))(J(\varepsilon_k) - J(-w))} \prod_{j=1}^{N} \frac{J(w) - J(-\widehat{\varepsilon_k}^j)}{J(w) - J(\varepsilon_j)}}{J(w) - J(-z)}.$$

Here, $z \in \{u, \hat{u}^1, \dots, \hat{u}^N\}$ is the list of roots of J(z) = J(u).

Solution Φ_{Θ}^4 , N = ∞

Use Cauchy residue th., Lagrange inversion th., Bürmann formula

$$G_{a,b}=rac{e^{N_{a,b}}}{a+b+\mu^2}$$

Congratulations Maja

$$\begin{split} N_{a,b} &= \int_{-\infty}^{\infty} \frac{dt}{2i\pi} log(a - J(-\mu^2/2 - it)) \frac{d}{dt} log(b - J(-\mu^2/2 + it)) \\ &- \log(a - (-\mu^2/2 - it)) \frac{d}{dt} log(b - (-\mu^2/2 + it)) \\ &- \log(-J(-\mu^2/2 - it)) \frac{d}{dt} log(-J(-\mu^2/2 + it)) \\ &+ \log(-(-\mu^2/2 - it)) \frac{d}{dt} log(-(-\mu^2/2 + it)) \end{split}$$

All higher correlation fcts. $G_{a,b,c,d} = \frac{G_{a,b}G_{c,d} - G_{b,c}G_{a,d,}}{(a-c)(b-d)}$

(for genus zero) are weighted polynomials of $G_{a,b}$ Higher genus functions follow blobbed topological recursion (proven for genus zero and one)

Two independent dimensions

- Topological dim. 2 from expansion into ribbon graphs
 - dual to triangulations (Φ³) or quadrangulations (Φ⁴) of 2D-surfaces
 - partition function counts them = 2D quantum gravity
 - ullet non-planar ribbon graphs suppressed in large- ${\mathcal N}$ limit
- ② Dynamical dimension D encoded in spectrum of the operator E, $D = \inf\{p \in \mathbb{R}_+ : \operatorname{tr}((1+E)^{-\frac{\rho}{2}}) < \infty\}$
 - ignored in 2D quantum gravity...
 - highly relevant for renormalisation of matricial QFT

polynomial	finite	super-ren	just ren.	not ren.
Φ3	D < 2	$2[\frac{D}{2}] \in \{2,4\}$	$2[\frac{D}{2}] = 6$	$2[\frac{D}{2}] > 6$
Φ^4	<i>D</i> < 2	$\bar{2}[\frac{D}{2}] = 2$	$2[\frac{\overline{D}}{2}]=4$	$2[\frac{\bar{D}}{2}] > 4$

NON-TRIVIAL

Triviality of $\Phi_{4+\epsilon}^4$ Aizenman, Duminil-Copin; Fröhlich

- lattice model gives mean field exponents -free fields
- use correlation inequalities and scaling of lattice constant

CLAIM: Φ_{Θ}^4 + oscillator is a NON-TRIVIAL MODEL

dimension drop occursH G,A Hock,R W

$$\begin{split} J_D(x) &= x - \lambda (-x)^{(D/2)} \int_0^{\Lambda_D^2} dt \frac{\rho_\lambda(t)}{(t+1)^{(D/2)}(t+1+x)} \\ \rho_\lambda(x) &= z_{\cdot 2} F_1(\alpha_\lambda, 1 - \alpha_\lambda, 2; -\frac{-z}{\mu^2}) \\ \alpha_\lambda &= \frac{arcsin[\lambda\pi]}{} \end{split}$$

Asymptotic behavior!

- ${}_{2}F_{1}$ behaves for large z as $\frac{1}{z^{\alpha}\lambda}$
- Moyal space has spectral dimension: $4-2\frac{\arcsin(\lambda\pi)}{\pi}$ for $|\lambda|<\frac{1}{\pi}$

Deform Minkowski, def. Wedge local fields

H G, Lechner; (Buchholz and Summers)

Quantum fields over deformed Minkowski space time

NC coordinates: $[\hat{\mathbf{x}}^{\mu}, \hat{\mathbf{x}}^{\nu}] = i\theta^{\mu\nu}, [\hat{\mathbf{x}}^{\mu}, \theta^{\sigma\tau}] = 0$

Field operators are defined as tensor product:

$$\Phi^{\otimes}(x) = \int d\mu_p (e^{ipx} e^{ip\hat{x}} \otimes \Phi_p)$$

Vacuum states: take: $\omega_{\theta} = \nu \otimes < \Omega$, $\Omega > \omega_{\theta}$ is independent of ν GNS rep. of pol algebra build from $\Phi^{\otimes}(f)$ wrt ω_{θ}

- There exists a unitary map from Φ[⊗](f) to
 φ_Θ acting on Hilbert space H of the undeformed theory
 ⇒ cov. prop. of φ^θ w.r.t. undeformed rep. U
- Consider family of fields

Congratulations Maja

Wedges

Congratulations Maja

We relate the antisymmetric matrices to Wedges: $W_1 = \left\{ x \in \mathbb{R}^D | x_1 > |x_0| \right\}$ act on standard wedge by proper Lorentz transformations $i_{\Lambda}(W) = \Lambda W$. Stabilizer group SO(1,1)xSO(2), corresponds to boosts and rotations.

Wedges and Wedge local QF

$$\mathcal{A} = \{ \gamma_{\Lambda}(\theta_1) | \Lambda \in \mathcal{L}_+ \}, \qquad \theta(\Lambda W_1) := \gamma_{\Lambda}(\theta_1) = \Lambda \theta_1 \Lambda^{\dagger}$$

Define wedge local fields through: $\phi = \{\phi_W | W \subset \mathcal{W}_0\}$ Lorentz transf. of W_1 get family of fields, covariance and localization in wedges.

$$U_{y,\Lambda}\Phi_W(x)U_{y,\Lambda}^{\dagger}=\Phi_{\Lambda W}(\Lambda x+y)$$

Theorem

Congratulations Maja

Let $\kappa_e > 0$ the family $\Phi_W(x)$ is a wedge local quantum field:

$$[\phi_{W_1}(f), \phi_{-W_1}(g)](\psi) = 0,$$

for $supp(f) \subset W_1$, $supp(g) \subset -W_1$.

Proof relies on spectrum condition and support properties

Relative Entropy

$$\Phi_{\Theta}(f) = \int \frac{d^3p}{\omega_p} (f_p^- e^{-ip\Theta P} a_p + f_p^+ e^{ip\Theta P} a_p^\dagger) = \int d\mu(p) (f_p^- A_p + f_p^+ A_p^\dagger))$$

$$f^+, f^- \text{ on-shell! } A_p, A_p^\dagger \text{ obey def. Algebra...}$$

Compare two states $|\Omega>$ and $e^{i\Phi_{\theta}(f)}|\Omega>$ Use Tomita-Takesaki modular theory

• $\Delta = e^{2\pi L_{01}} L_{01}$ is boost operator (B-W th)

$$L_{01} = \int d^3x x^1 T_{00}(x)$$

coherent state for $\Theta = 0$

Use ARAKI UHLMANN equation

•
$$S(\omega',\omega) = i \frac{d}{dt}|_{t=0} < \Omega |U\Delta^{it}U^{\dagger}\Delta^{-it}\Omega> =$$

= -2
$$\pi < \Omega | e^{i\Phi_{\Theta}(f)} L_{01} e^{-i\Phi_{\Theta}(f)} \Omega >$$

Calculate quantum corrections to relative entropy

$$L_{01} = \int d\mu(k) a_k^{\dagger} \omega_k \frac{d}{dk^{\dagger}} a_k$$

$$S(\omega',\omega) = S_0(\omega',\omega) + \frac{8\pi}{3}\Theta(\int d^3k f_k^+ f_k^-)^2$$

gives modified Bekenstein bound

HG + A. Much + R. Verch (tbp)

Summary

Congratulations Maja

DEFORMED EUCLIDEAN SPACE-TIME

- Found renormalizable ncQFT for matter fields
- \bullet β function vanishes identically
- constructive procedure (partly) done
- two point fct known: NON-TRIVIAL integrable?

J Brahnal+H G+A Hock+R W 2110.11789

partition fct.s: solve Pde.s

HG, + A. Sako, Tanomata, + R W 2311.10974.2308.11523

DEFORMED MINKOWSKI Space-Time

- Found Wedge local quantum fields
- Calculated quantum corrections to relative entropy (tbp)

Congratulations

to MAJA

Congratulations to your birthday

