Remarks on two "solvable" ncQFT models

Quantum + Fuzzy:
Workshop in honour of the birthday of
Professor Maja Buric

Harald Grosse

Faculty of Physics, University of Vienna

Happy Birthday
 Maja

- Congratulations
- many contributions
- many publications
- many coworker
- a nice atmosphere
- Fuzzy black hole, fuzzy de Sitter
- Fuzzy cosmology
-

Many collaborations Maja +...

- John, Voja
- Latas, Zoupanos
- Trampetic, Nenadovic
- Prekrat
- more than 20 more
- renormalization questions Maja + Voja ...
- Maja + M. Wohlgenannt !!! curvature!!!
- Maja + HG + John : Gauge model...

Quartic Model

- Φ^{4} on R_{\ominus}^{4} nonren.! add box term...ren.!
- symmetric coupling leads to a matrix model
- $S=\operatorname{Tr} E \Phi^{2}+\lambda \operatorname{Tr} \Phi^{4}$
- $\beta_{\lambda}=0$
- nonperturbative ren.
- 2 Ren-const Z, m^{2}
- WI+SD Vincent,... solvable, NONTRIVIAL!
- blobbed top. rec.

review: J Brahnal+HG+A Hock + R Wulkenhaar
2110.11523

Deform Euclidean \mathbb{R}^{4}

Formulation

ϕ^{4} on nc $\mathbb{R}^{4},\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu}$ antisymmetric,
or star product

$$
(a * b)(x)=\int d y \int d k a\left(x+\frac{\theta k}{2}\right) b(x+y) e^{i k y}
$$

ϕ^{4} action

$$
S=\int d p\left(p^{2}+m^{2}\right) \phi_{p} \phi_{-p}+\lambda \int \prod_{j=1}^{4}\left(d p_{j} \phi_{p_{j}}\right) \delta\left(\sum_{j=1}^{4} p_{j}\right) e^{-i \sum_{i<j} p_{i} \theta p_{j}}
$$

Ribbon graphs, not ren., implied by IR/UV mixing
Possible solution: modify action

Theorem: H. G. + R. Wulkenhaar

Theorem: Action is pert. and nonpert. ren

- perturbation theory valid at all scales!
- non-perturbative construction "done"!

Solution ϕ_{9}^{4} : SD and WT identities

Regard the planar two-point function $G_{a b}$ as evaluation of a holomorphic function $G(\zeta, \eta)$ (for genus zero):
$(\zeta+\eta+2 c) Z G(\zeta, \eta)=1-\frac{\lambda}{N} \sum_{k=1}^{N}\left(Z^{2} G(\zeta, \eta) G\left(\zeta, E_{k}\right)-\frac{Z G\left(E_{k}, \eta\right)-Z G(\zeta, \eta)}{E_{k}-\zeta}\right)$
Non-linear equ., hard to solve. Solved in $D=2$ E. Panzer + R. W, Divergence problem: adjust $Z(N, \lambda)$ and $c(N, \lambda)$ to achieve limit $N \rightarrow \infty$. Start from a holomorphic function J (to be determined) and define for appropriately chosen pre-images $J\left(\varepsilon_{k}\right)=E_{k}$ another holomorphic function \mathcal{G} by $\mathcal{G}(z, w)=G(J(z), J(w))$.

The key step is to relate J and \mathcal{G} by

$$
\begin{gathered}
J(z)+2 c+\frac{\lambda}{N} \sum_{k=1}^{N} Z \mathcal{G}\left(z, \varepsilon_{k}\right)+\frac{\lambda}{N} \sum_{k=1}^{N} \frac{1}{J\left(\varepsilon_{k}\right)-J(z)}=-J(-z) \\
(J(w)-J(-z)) Z \mathcal{G}(z, w)=1+\frac{\lambda}{N} \sum_{k=1}^{N} \frac{Z \mathcal{G}\left(\varepsilon_{k}, w\right)}{J\left(\varepsilon_{k}\right)-J(z)}
\end{gathered}
$$

Solution ϕ_{Θ}^{4}, finite dof

When N is finite and fixed, J is a rational function with $N+1$ pre-images:

Theorem

Construct $2 N$ functions $\left\{\varepsilon_{k}(\lambda), \varrho_{k}(\lambda)\right\}_{k=1, \ldots, N}$ as implicitly defined solution of the system

$$
E_{k}=J\left(\varepsilon_{k}\right), \quad \frac{1}{\varrho_{k}}=J^{\prime}\left(\varepsilon_{k}\right), \quad \text { where } \quad J(z)=z-\frac{\lambda}{\mathcal{N}} \sum_{j=1}^{d} \frac{\varrho_{j}}{\varepsilon_{j}+z}
$$

and $\lim _{\lambda \rightarrow 0}\left(\varepsilon_{k}, \varrho_{k}\right)=\left(E_{k}, 1\right) . \quad\left(^{*}\right)$ is solved for $c=0$ and $Z=1$ by $G(\zeta, \eta)=\mathcal{G}\left(J^{-1}(\zeta), J^{-1}(\eta)\right)$, where \mathcal{G} is the rational (and symmetric) function

$$
\mathcal{G}(z, w)=\frac{1-\frac{\lambda}{N} \sum_{k=1}^{N} \frac{1}{\left(J(z)-J\left(\varepsilon_{k}\right)\right)\left(J\left(\varepsilon_{k}\right)-J(-w)\right)} \prod_{j=1}^{N} \frac{J(w)-J\left(-\widehat{\varepsilon}_{k}^{j}\right)}{J(w)-J\left(\varepsilon_{j}\right)}}{J(w)-J(-z)} .
$$

Here, $z \in\left\{u, \hat{u}^{1}, \ldots, \hat{u}^{N}\right\}$ is the list of roots of $J(z)=J(u)$.

Solution $\Phi_{\Theta}^{4}, N=\infty$

Use Cauchy residue th., Lagrange inversion th., Bürmann formula $G_{a, b}=\frac{e^{N_{a, b}}}{a+b+\mu^{2}}$

$$
\begin{array}{r}
N_{a, b}=\int_{-\infty}^{\infty} \frac{d t}{2 i \pi} \log \left(a-J\left(-\mu^{2} / 2-i t\right)\right) \frac{d}{d t} \log \left(b-J\left(-\mu^{2} / 2+i t\right)\right) \\
-\log \left(a-\left(-\mu^{2} / 2-i t\right)\right) \frac{d}{d t} \log \left(b-\left(-\mu^{2} / 2+i t\right)\right) \\
-\log \left(-J\left(-\mu^{2} / 2-i t\right)\right) \frac{d}{d t} \log \left(-J\left(-\mu^{2} / 2+i t\right)\right) \\
+\log \left(-\left(-\mu^{2} / 2-i t\right)\right) \frac{d}{d t} \log \left(-\left(-\mu^{2} / 2+i t\right)\right)
\end{array}
$$

All higher correlation fcts. $G_{a, b, c, d}=\frac{G_{a, b} G_{c, d}-G_{b, c} G_{a, d,}}{(a-c)(b-d)}$
(for genus zero) are weighted polynomials of $G_{a, b}$ Higher genus functions follow blobbed topological recursion (proven for genus zero and one)

Two independent dimensions

(1) Topological dim. 2 from expansion into ribbon graphs

- dual to triangulations (Φ^{3}) or quadrangulations (Φ^{4}) of 2D-surfaces
- partition function counts them =2D quantum gravity
- non-planar ribbon graphs suppressed in large- \mathcal{N} limit
(2) Dynamical dimension D encoded in spectrum of the operator E,

$$
D=\inf \left\{p \in \mathbb{R}_{+}: \operatorname{tr}\left((1+E)^{-\frac{p}{2}}\right)<\infty\right\}
$$

- ignored in 2D quantum gravity...
- highly relevant for renormalisation of matricial QFT

polynomial	finite	super-ren	just ren.	not ren.
Φ^{3}	$D<2$	$2\left[\frac{D}{2}\right] \in\{2,4\}$	$2\left[\frac{D}{2}\right]=6$	$2\left[\frac{D}{2}\right]>6$
Φ^{4}	$D<2$	$2\left[\frac{D}{2}\right]=2$	$2\left[\frac{D}{2}\right]=4$	$2\left[\frac{D}{2}\right]>4$

NON-TRIVIAL

Triviality of $\Phi_{4+\epsilon}^{4} \quad$ Aizenman, Duminil-Copin ; Fröhlich

- lattice model gives mean field exponents -free fields
- use correlation inequalities and scaling of lattice constant CLAIM: $\Phi_{\ominus}^{4}+$ oscillator is a NON-TRIVIAL MODEL
- dimension drop occurs

H G, A Hock, R W
$J_{D}(x)=x-\lambda(-x)^{(D / 2)} \int_{0}^{\Lambda_{D}^{2}} d t \frac{\rho_{\lambda}(t)}{(t+1)^{(D / 2)}(t+1+x)}$

$$
\rho_{\lambda}(x)=\rho_{0}\left(J_{D}(x)\right)
$$

$J_{4}(z)=Z{ }_{2} F_{1}\left(\alpha_{\lambda}, 1-\alpha_{\lambda}, 2 ;-\frac{-z}{\mu^{2}}\right)$
$\alpha_{\lambda}=\frac{\arcsin [\lambda \pi]}{\pi}$
Asymptotic behavior !

- ${ }_{2} F_{1}$ behaves for large z as $\frac{1}{z^{\alpha} \lambda}$
- Moyal space has spectral dimension:

$$
4-2 \frac{\arcsin (\lambda \pi)}{\pi} \text { for }|\lambda|<\frac{1}{\pi}
$$

Deform Minkowski, def. Wedge local fields

H G, Lechner; (Buchholz and Summers)
Quantum fields over deformed Minkowski space time
NC coordinates: $\left[\hat{x}^{\mu}, \hat{x}^{\nu}\right]=i \theta^{\mu \nu},\left[\hat{x}^{\mu}, \theta^{\sigma \tau}\right]=0$
Field operators are defined as tensor product:

$$
\Phi^{\otimes}(x)=\int d \mu_{p}\left(e^{i p x} e^{i p \hat{x}} \otimes \Phi_{p}\right)
$$

Vacuum states: take: $\omega_{\theta}=\nu \otimes<\Omega, . \Omega>$
ω_{θ} is independent of ν GNS rep. of pol algebra build from $\Phi^{\otimes}(f)$ wrt ω_{θ}

- There exists a unitary map from $\Phi^{\otimes}(f)$ to ϕ_{\ominus} acting on Hilbert space H of the undeformed theory \Rightarrow cov. prop. of ϕ^{θ} w.r.t. undeformed rep. U
- Consider family of fields

Wedges

We relate the antisymmetric matrices to Wedges: $W_{1}=\left\{x \in \mathbb{R}^{D}\left|x_{1}>\left|x_{0}\right|\right\}\right.$ act on standard wedge by proper Lorentz transformations $i_{\Lambda}(W)=\Lambda W$. Stabilizer group $S O(1,1) \times S O(2)$, corresponds to boosts and rotations.

Wedges and Wedge local QF

$$
\mathcal{A}=\left\{\gamma_{\Lambda}\left(\theta_{1}\right) \mid \Lambda \in \mathcal{L}_{+}\right\}, \quad \theta\left(\Lambda W_{1}\right):=\gamma_{\Lambda}\left(\theta_{1}\right)=\Lambda \theta_{1} \Lambda^{\dagger}
$$

Define wedge local fields through: $\phi=\left\{\phi_{W} \mid W \subset \mathcal{W}_{0}\right\}$ Lorentz transf. of W_{1} get family of fields, covariance and localization in wedges.

$$
U_{y, \Lambda} \Phi_{W}(x) U_{y, \Lambda}^{\dagger}=\Phi_{\wedge W}(\wedge x+y)
$$

Theorem

Let $\kappa_{e} \geq 0$ the family $\Phi_{W}(x)$ is a wedge local quantum field:

$$
\left[\phi_{W_{1}}(f), \phi_{-w_{1}}(g)\right](\psi)=0
$$

$$
\text { for } \operatorname{supp}(f) \subset W_{1}, \operatorname{supp}(g) \subset-W_{1}
$$

Proof relies on spectrum condition and support properties

Relative Entropy

$$
\left.\Phi_{\Theta}(f)=\int \frac{d^{3} p}{\omega_{p}}\left(f_{p}^{-} e^{-i p \Theta P} a_{p}+f_{p}^{+} e^{i p \Theta P} a_{p}^{\dagger}\right)=\int d \mu(p)\left(f_{p}^{-} A_{p}+f_{p}^{+} A_{p}^{\dagger}\right)\right)
$$

$$
f^{+}, f^{-} \text {on-shell! } A_{p}, A_{p}^{\dagger} \text { obey def. Algebra... }
$$

Compare two states $\mid \Omega>$ and $e^{i \Phi_{\theta}(f)} \mid \Omega>\quad$ coherent state for $\Theta=0$ Use Tomita-Takesaki modular theory

- $\Delta=e^{2 \pi L_{01}} L_{01}$ is boost operator (B-W th)

$$
L_{01}=\int d^{3} x x^{1} T_{00}(x)
$$

Use ARAKI UHLMANN equation

- $\left.S\left(\omega^{\prime}, \omega\right)=\left.i \frac{d}{d t}\right|_{t=0}<\Omega \right\rvert\, U \Delta^{i t} U^{\dagger} \Delta^{-i t} \Omega>=$

$$
=-2 \pi<\Omega \mid e^{i \Phi_{\Theta}(f)} L_{01} e^{-i \Phi_{\Theta}(f)} \Omega>
$$

Calculate quantum corrections to relative entropy
$L_{01}=\int d \mu(k) a_{k}^{\dagger} \omega_{k} \frac{d}{d k^{\top}} a_{k}$
$S\left(\omega^{\iota}, \omega\right)=S_{0}\left(\omega^{\prime}, \omega\right)+\frac{8 \pi}{3} \Theta\left(\int d^{3} k f_{k}^{+} f_{k}^{-}\right)^{2}$
gives modified Bekenstein bound
HG + A. Much + R. Verch (tbp)

Summary

DEFORMED EUCLIDEAN SPACE-TIME

- Found renormalizable ncQFT for matter fields
- β - function vanishes identically
- constructive procedure (partly) done
- two point fct known: NON-TRIVIAL integrable?

J Brahnal+H G+A Hock+R W 2110.11789

- partition fct.s: solve Pde.s HG, + A. Sako, Tanomata, + R W 2311.10974,2308.11523

DEFORMED MINKOWSKI Space-Time

- Found Wedge local quantum fields
- Calculated quantum corrections to relative entropy (tbp)

Congratulations

to MAJA

Congratulations to your birthday

