Insights from Higher Gauge Theory: the quest for Quantum Gravity with matter

Tijana Radenković
(in collaboration with Marko Vojinović)

INSTITUTE OF PHYSICS,
UNIVERSITY OF BELGRADE

This research was supported by the Ministry of Science, Technological development and Innovations of the Republic of Serbia and by the Science Fund of the Republic of Serbia, grant 7745968, "Quantum Gravity from Higher Gauge Theory 2021 " - QGHG-2021.

QUANTUM \& FUZZY
WORKSHOP IN HONOR OF THE 65TH BIRTHDAY OF PROFESSOR MAJA BURIĆ

4-5 April 2024, Belgrade, Serbia

Фонд зa нayky
Републике Србије

A SKETCH OF THE TALK

- 3-group and 3-gauge theory
\hookrightarrow based on R. Picken and J. Faria Martins, arXiv:0907.2566.
- 3BF action
\hookrightarrow Models with relevant dynamics based on A. Miković and M. Vojinović, arXiv: 1110.4694, and TR and M. Vojinović, arXiv:1904.07566.
- Gauge symmetry of $3 B F$ theory
$\rightarrow G^{-}, H^{-}, L^{-}, M^{-}$, and N-gauge transformations and diffeomorphisms, TR and M. Vojinović, arXiv: 2101.04049.
- Quantization of the topological $3 B F$ theory
\rightarrow the state sum Z is an example of Porter's TQFT for $d=4$ and $n=3$ T. Porter (1998), based on TR and M. Vojinović, arXiv: 2201.02572.
\hookrightarrow The construction of the state sum Z and a proof that the $3 B F$ state sum is invariant under Pachner moves. TR and M. Vojinović, arXiv: 2201.02572.
\hookrightarrow This is a generalization of the state sum based on the classical $2 B F$ action with the underlying 2-group structure
F. Girelli, H. Pfeiffer and E. M. Popescu, arXiv:0708.3051.
- Conclusions

INTRODUCTION

SPINFOAM QUANTIZATION PROCEDURE

\rightarrow The goal is to define the configurational integral $Z=\int \mathcal{D} \phi e^{i S[\phi]}$. On a discretized D-dimensional manifold, we define the state sum:

$$
Z=\sum_{\{\phi\}} \prod_{v \in T} \mathcal{A}_{v}(\phi) \prod_{\epsilon \in T} \mathcal{A}_{\epsilon}(\phi) \cdots \prod_{\sigma \in T} \mathcal{A}_{\sigma}(\phi) .
$$

- The triangulation $\mathcal{T}\left(\mathcal{M}_{D}\right)$ of the manifold \mathcal{M}_{D} contains vertices v, edges ϵ, faces Δ, tetrahedra τ, \ldots, D-simplices σ.
- Each of these simplices is colored with color ϕ - describing the fundamental variables of the model.
- To each simplex is assigned an amplitude \mathcal{A} - describing the dynamics of variable ϕ.

1. Write the action in the appropriate form:

$$
S_{G R}[g]=S_{\text {top }}[g]+S_{\text {constraints }}[g] .
$$

2. Construct the topological state sum:

$$
Z=\int \mathcal{D} g e^{i S_{t o p}}
$$

3. By modifying amplitudes in a certain way, we define the state sum corresponding to the complete theory:

$$
Z=\int \mathcal{D} g e^{i S_{\text {top }}+i S_{\text {constraints }}}
$$

Models of Quantum Gravity

Theories of quantum gravity within the covariant approach are defined by quantizing the $B F$ theory with constraints for the Lie group G,

$$
S_{B F}=\int_{\mathcal{M} 4}\langle B \wedge F\rangle \mathfrak{g}, .
$$

\rightarrow Ponzano-Regge model of $3 D$ gravity for the $S U(2)$ group.
Ponzano and Regge, 1968.
\rightarrow Barrett-Crane model of $4 D$ gravity for $S O(3,1)$.
Barrett and Crane, 1998.
$\rightarrow E P R L / F K$ model of $4 D$ gravity, also known as the spinfoam model.
J. Engle, R. Pereira, E. Livine, and K. Rovelli, and L. Freidel and K. Krasnov, 2008.
\rightarrow All these models are focused on defining the theory of pure gravity without matter.
\rightarrow Attempts to add matter fields into the theory have had limited success, mainly due
to the fact that mass terms cannot be expressed within these theories (tetrad fields are not present in the topological sector of the $B F$ theory).

Models of quantum gravity

\rightarrow In order to overcome the issue of matter coupling in BF models of quantum gravity, a new approach is developed within the framework of category theory, based on a categorical generalization of the BF action - the so-called $2 B F$ action ($B F C G$ action).

$$
S_{2 B F}=\int_{\mathcal{M} 4}\langle B \wedge \mathcal{F}\rangle \mathfrak{g}+\langle C \wedge G\rangle_{\mathfrak{h}} .
$$

\rightarrow Spin-cube model of $4 D$ gravity for the Poincare 2-group.
A. Miković and M. Vojinović, 2012.
\rightarrow This result has opened the possibility of coupling matter with gravity in a linear fashion.

Crossed Module

\hookrightarrow In the framework of category theory, the group as an algebraic structure can be understood as a category with only one object and invertible morphisms
\rightarrow The notion of a category can be generalized to the so-called higher categories, which have not only objects and morphisms, but also 2-morphisms (morphisms between morphisms), and so on.
\rightarrow Similarly to the notion of a group, one can introduce a 2-group as a 2-category consisting of only one object, where all the morphisms and 2-morphisms are invertible.
\rightarrow A 2-group is equivalent to a crossed module ($H \xrightarrow{\partial} G, \triangleright$):
$\rightarrow G$ is a group with composition of morphisms as the group operation

$\hookrightarrow H$ is a group consisting of all 2-morphisms having the identity morphism as the source

\rightarrow Action of G on H given by the operation $\triangleright: G \rightarrow A u t(H)$

\rightarrow Group homomorphism $\partial: H \rightarrow G$

CONSTRAINED $2 B F$ ACTION FOR GRAVITY

Gravity
\rightarrow Crossed module ($H \xrightarrow{\partial} G, \triangleright$):

$$
\begin{aligned}
& \triangleright G=S O(3,1), \quad H=\mathbb{R}^{4}, \\
& \triangleright M_{a b} \triangleright P_{c}=\left[M_{a b}, P_{c}\right] \\
& \triangleright \partial\left(\tau_{\alpha}\right)=0 .
\end{aligned}
$$

\rightarrow 2-connection $(\alpha, \beta): \alpha=\omega^{a b} M_{a b}, \quad \beta=\beta^{a} P_{a}$.
\rightarrow 2-curvature $(\mathcal{F}, \mathcal{G}): \mathcal{F}=R^{a b} M_{a b}, \quad \mathcal{G}=\nabla \beta P_{a}$.
\rightarrow Topological action:

$$
S_{2 B F}=\int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+e_{a} \wedge \nabla \beta^{a}
$$

\rightarrow Constrained action:

$$
S=\int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+e_{a} \wedge \nabla \beta^{a}-\lambda_{a b} \wedge\left(B^{a b}-\frac{1}{16 \pi l_{p}^{2}} \varepsilon^{a b c d} e_{c} \wedge e_{d}\right)
$$

CATEGORICAL LADDERS

\rightarrow Although the group structure is sufficient to describe gauge fields and the structure of 2-groups has been successfully applied to describe the gravitational field, they are insufficient to describe other matter fields, such as scalar and fermionic fields.
\rightarrow To describe these fields, it is necessary to take another step in the categorical ladder, a categorical generalization of the algebraic structure of 2-groups to the structure of 3-groups.
\rightarrow It turns out that the structure of 3-groups successfully describes all fields present in the Standard Model coupled to gravity.

categorical structure	algebraic structure	linear structure	topological action	degrees of freedom
Lie group	Lie group	Lie algebra	$B F$ theory	gauge fields
Lie 2-group	Lie crossed module	differential Lie crossed module	$2 B F$ theory	tetrad fields
Lie 3-group	Lie 2-crossed module	differential Lie 2-crossed module	$3 B F$ theory	scalar and fermion fields

3-GROUPS

2-crossed module $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{p}}\right)$

\rightarrow Groups G, H, and L;
\rightarrow Mappings ∂ and $\delta\left(\partial \delta=1_{G}\right)$;
\rightarrow Action \triangleright of group G on all three groups;
\rightarrow Mapping $\left\{_{-},{ }_{-}\right\}_{p}$ - Paiffer lifting:

$$
\left\{_{-},\right\}_{\mathrm{p}}: H \times H \rightarrow L
$$

These groups and mappings must satisfy certain axioms in order to form a 2-crossed module:

1. $\delta\left(\left\{h_{1}, h_{2}\right\}_{\mathrm{p}}\right)=\left\langle h_{1}, h_{2}\right\rangle_{\mathrm{p}}, \quad \forall h_{1}, h_{2} \in H$,
2. $\left[l_{1}, l_{2}\right]=\left\{\delta\left(l_{1}\right), \delta\left(l_{2}\right)\right\}_{\mathrm{p}}, \quad \forall l_{1}, l_{2} \in L$. Notation is $[l, k]=l k l^{-1} k^{-1}$;
3. $\left\{h_{1} h_{2}, h_{3}\right\}_{\mathrm{p}}=\left\{h_{1}, h_{2} h_{3} h_{2}^{-1}\right\}_{\mathrm{p}} \partial\left(h_{1}\right) \triangleright\left\{h_{2}, h_{3}\right\}_{\mathrm{p}}, \quad \forall h_{1}, h_{2}, h_{3} \in H$;
4. $\left\{h_{1}, h_{2} h_{3}\right\}_{\mathrm{p}}=\left\{h_{1}, h_{2}\right\}_{\mathrm{p}}\left\{h_{1}, h_{3}\right\}_{\mathrm{p}}\left\{\left\langle h_{1}, h_{3}\right\rangle_{\mathrm{p}}^{-1}, \partial\left(h_{1}\right) \triangleright h_{2}\right\}_{\mathrm{p}}, \quad \forall h_{1}, h_{2}, h_{3} \in H$;
5. $\{\delta(l), h\}_{\mathrm{p}}\{h, \delta(l)\}_{\mathrm{p}}=l\left(\partial(h) \triangleright l^{-1}\right), \quad \forall h \in H, \quad \forall l \in L$.

3-GAUGE THEORY

3-group, i.e., 2-crossed module allows us to describe 3-gauge theory.
\rightarrow The structure of 2-crossed module leads to 3-connections, ordered triples (α, β, γ), where α, β, and γ are differential form elements of algebras,

$$
\begin{array}{ll}
\alpha=\alpha^{\alpha}{ }_{\mu} \tau_{\alpha} \mathrm{d} x^{\mu}, & \alpha \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{g}\right), \\
\beta=\beta^{a}{ }_{\mu \nu} t_{a} \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu}, & \beta \in \mathcal{A}^{2}\left(\mathcal{M}_{4}, \mathfrak{h}\right), \\
\gamma=\gamma^{A}{ }_{\mu \nu \rho} T_{A} \mathrm{~d} x^{\mu} \wedge \mathrm{d} x^{\nu} \wedge \mathrm{d} x^{\rho}, & \gamma \in \mathcal{A}^{3}\left(\mathcal{M}_{4}, \mathfrak{l}\right) .
\end{array}
$$

\rightarrow Then we define line, surface, and volume holonomies,

$$
g=\exp \int_{\gamma} \alpha, \quad h=\exp \int_{S} \beta, \quad l=\exp \int_{V} \gamma .
$$

\rightarrow The corresponding fake 3-curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$ is defined as:

$$
\begin{gathered}
\mathcal{F}=\mathrm{d} \alpha+\alpha \wedge \alpha-\partial \beta, \quad \mathcal{G}=\mathrm{d} \beta+\alpha \wedge^{\triangleright} \beta-\delta \gamma, \\
\mathcal{H}=\mathrm{d} \gamma+\alpha \wedge^{\triangleright} \gamma+\{\beta \wedge \beta\}_{\mathrm{pf}} .
\end{gathered}
$$

3BF THEORY

\rightarrow For a manifold \mathcal{M}_{4} and a 2-crossed module $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\{-,\}_{\mathrm{pf}}\right)$, or 3 -curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$, the $3 B F$ action is defined as:

$$
S_{3 B F}=\int_{\mathcal{M}_{4}}\langle B \wedge \mathcal{F}\rangle_{\mathfrak{g}}+\langle C \wedge \mathcal{G}\rangle_{\mathfrak{h}}+\langle D \wedge \mathcal{H}\rangle_{\mathfrak{l}} .
$$

- $3 B F$ theory is a topological theory,
- it relies on the structure of a 3-group,
- it's a generalization of the $B F$ topological theory based on the group structure G.
\rightarrow Physical interpretation of Lagrange multipliers C and D :
-1-form C with values in the algebra \mathfrak{h} can be interpreted as the tetrad field if $H=\mathbb{R}^{4}$:

$$
C \rightarrow e=e^{a}{ }_{\mu}(x) t_{a} \mathrm{~d} x^{\mu},
$$

A. Miković and M. Vojinović, arXiv: 1110.4694.

- function D with values in the algebra \mathfrak{l} can be interpreted as a set of real fields, for an appropriate choice of group L :

$$
D \rightarrow \phi=\phi^{A}(x) T_{A}
$$

3BF THEORY

2-crossed module for (trivial) Standard Model:

- Groups

$$
G=S O(3,1) \times S U(3) \times S U(2) \times U(1), \quad H=\mathbb{R}^{4}, \quad L \text { - matter sector }
$$

- Mappings δ and ∂ are trivial - for all $l \in L$ and $\vec{v} \in H$, we define

$$
\delta l=1_{H}=0, \quad \partial \vec{v}=1_{G} ;
$$

- Paiffer lifting is trivial - for all $\vec{u}, \vec{v} \in H$, we define

$$
\{\vec{u}, \vec{v}\}_{\mathrm{pf}}=1_{L} ;
$$

- Action \triangleright of group G on itself is in the adjoint representation;
- Action \triangleright of group G on H is in the vector representation for the $S O(3,1)$ sector and in the trivial representation for the $S U(3) \times S U(2) \times U(1)$ sector;
- Action of group G on L is non-trivial and depends on the choice of group L determines the transformation properties of fields.

GROUP L

How do we choose the group L ?

\rightarrow Since $\phi=\phi^{A} T_{A}$, we have one real field $\phi^{A}(x)$ for each generator of the group L.
\rightarrow How many real fields are needed to describe the matter sector of the Standard Model?

Lepton 1st generation	Red color 1st generation quarks	Green color 1st generation quarks	Blue color 1st generation quarks
$\binom{\nu_{e}}{e^{-}}_{L}$	$\binom{u_{r}}{d_{r}}_{L}$	$\binom{u_{g}}{d_{g}}_{L}$	$\binom{u_{b}}{d_{b}}_{L}$
$\left(\nu_{e}\right)_{R}$	$\left(u_{r}\right)_{R}$	$\left(u_{g}\right)_{R}$	$\left(u_{b}\right)_{R}$
$\left(e^{-}\right)_{R}$	$\left(d_{r}\right)_{R}$	$\left(d_{g}\right)_{R}$	$\left(d_{b}\right)_{R}$

GROUP L

\rightarrow How many real components of fields do we have in the matter sector of the Standard Model?

- Fermion sector:

$$
16 \frac{\text { spinors }}{\text { family }} \times 3 \text { families } \times 4 \frac{\text { real fields }}{\text { spinor }}=192 \text { real fields } \phi^{A} .
$$

- Higgs sector:

$$
2 \text { complex scalar fields }=4 \text { real fields } \phi^{A} .
$$

- We obtain that the group structure L :

$$
L=L_{\text {fermion }} \times L_{\text {Higgs }}, \quad \operatorname{dim} L_{\text {fermion }}=192, \quad \operatorname{dim} L_{\text {Higgs }}=4
$$

\rightarrow The action $G \triangleright L \rightarrow L$ determines the transformation properties of the real fields
ϕ^{A} under Lorentz and internal transformations.
$\rightarrow G$ acts in the same way in each family, so the group L has the structure:

$$
L_{\text {fermion }}=L_{1 \text { st family }} \times L_{2 n d \text { family }} \times L_{3 r d \text { family }}, \quad \operatorname{dim} L_{k-t h \text { family }}=64
$$

Formulation of the Classical Theory

\rightarrow The action $G \triangleright L \rightarrow L$ determines the transformation properties of the real fields ϕ^{A} under Lorentz and internal transformations. For example, consider a doublet $\binom{u_{b}}{d_{b}}_{L}$. The action $g \triangleright u_{b}$ encodes that u_{b} consists of 4 real-valued fields which transform as:

- a left-handed spinor wrt. $S O(3,1)$,
- as a "blue" component of the fundamental representation of $S U(3)$,
. and as "isospin $+\frac{1}{2}$ " of the left doublet wrt. $S U(2) \times U(1)$.
\rightarrow The structure of 3-groups successfully provides a description of all fields present in the Standard Model, interacting with gravity.
\rightarrow Additionally, this structure naturally associates a new gauge group to the scalar and fermionic fields present in the theory, thus generalizing the concept of gauge groups in Yang-Mills theory.
\rightarrow After determining the appropriate 3-groups and constructing the corresponding $3 B F$ actions, it is necessary to impose appropriate constraints on the degrees of freedom present in the topological sector of the $3 B F$ action, in order to obtain the desired classical dynamics of matter and gravity fields.

3BF THEORY

\rightarrow For the manifold \mathcal{M}_{4} and the 2 -crossed module $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{\left\{_{-},\right\}_{\text {pf }}\right)\right.$, or equivalently for the 3 -curvature ($\mathcal{F}, \mathcal{G}, \mathcal{H}$), the $3 B F$ action is defined as:

$$
S_{3 B F}=\int_{\mathcal{M}_{4}}\langle B \wedge \mathcal{F}\rangle_{\mathfrak{g}}+\langle C \wedge \mathcal{G}\rangle_{\mathfrak{h}}+\langle D \wedge \mathcal{H}\rangle_{\mathfrak{l}}
$$

\rightarrow By adding constraints to the topological action, physically relevant models are defined:
$2 B F$ actions with constraints for:

- Yang-Mills field,
- and Einstein-Cartan gravity,
and $3 B F$ actions with constraints describing
- Klein-Gordon field,
- Dirac field,
- Weyl field,
- and Majorana field.
coupled to gravity in the standard manner.

Gravity and $S U(N)$ Yang-Mills Field

Gravity and $S U(N)$ Yang-Mills Field

\rightarrow Crossed module ($H \xrightarrow{\partial} G, \triangleright$):

$$
\begin{aligned}
& \triangleright G=S O(3,1) \times S U(N), \quad H=\mathbb{R}^{4}, \\
& \triangleright M_{a b} \triangleright P_{c}=\left[M_{a b}, P_{c}\right], \quad \tau_{I} \triangleright P_{a}=0, \\
& \triangleright \partial\left(\tau_{I}\right)=0 .
\end{aligned}
$$

$\leftrightarrow 2$-connection $(\alpha, \beta): \alpha=\omega^{a b} M_{a b}+A^{I} \tau_{I}, \quad \beta=\beta^{a} P_{a}$.
\rightarrow 2-curvature $(\mathcal{F}, \mathcal{G}): \mathcal{F}=R^{a b} M_{a b}+F^{I} \tau_{I}, \quad \mathcal{G}=\nabla \beta P_{a}$.
\rightarrow Topological action: $S_{2 B F}=\int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+B^{I} \wedge F_{I}+e_{a} \wedge \nabla \beta^{a}$.
\rightarrow Constrained action:

$$
\begin{aligned}
S= & \int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+B^{I} \wedge F_{I}+e_{a} \wedge \nabla \beta^{a}-\lambda_{a b} \wedge\left(B^{a b}-\frac{1}{16 \pi l_{p}^{2}} \varepsilon^{a b c d} e_{c} \wedge e_{d}\right) \\
& +\lambda^{I} \wedge\left(B_{I}-\frac{12}{g} M_{a b I} e^{a} \wedge e^{b}\right)+\zeta^{a b I}\left(M_{a b I} \varepsilon_{c d e f} e^{c} \wedge e^{d} \wedge e^{e} \wedge e^{f}-g_{I J} F^{J} \wedge e_{a} \wedge e_{b}\right)
\end{aligned}
$$

Klein-Gordon field

Klein-Gordon field $D=\phi \mathbb{I}$

\rightarrow 2-crossed module $\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright,\left\{\left\{_{-},\right\}\right)\right.$:

- $G=S O(3,1), \quad H=\mathbb{R}^{4}, \quad L=\mathbb{R}$,
$-M_{a b} \triangleright P_{c}=\left[M_{a b}, P_{c}\right], \quad M_{a b} \triangleright T_{A}=0$,
$\Rightarrow \partial\left(P_{a}\right)=0, \quad \delta\left(T_{A}\right)=0, \quad\left\{P_{a}, P_{b}\right\}=0$.
$\rightarrow 3$-connection $(\alpha, \beta, \gamma): \alpha=\omega^{a b} M_{a b}, \quad \beta=\beta^{a} P_{a}, \quad \gamma=\gamma \mathbb{I}$.
$\rightarrow 3$-curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H}): \mathcal{F}=R^{a b} M_{a b}, \quad \mathcal{G}=\nabla \beta^{a} P_{a}, \quad \mathcal{H}=\mathrm{d} \gamma$.
\rightarrow Topological action: $S_{3 B F}=\int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+e_{a} \wedge \nabla \beta^{a}+\phi \mathrm{d} \gamma$.

$$
\begin{aligned}
S=\int_{\mathcal{M}_{4}} & B^{a b} \wedge R_{a b}+e_{a} \wedge \nabla \beta^{a}+\phi \mathrm{d} \gamma-\lambda_{a b} \wedge\left(B^{a b}-\frac{1}{16 \pi l_{p}^{2}} \varepsilon^{a b c d} e_{c} \wedge e_{d}\right) \\
& +\lambda \wedge\left(\gamma-\frac{1}{2} H_{a b c} e^{a} \wedge e^{b} \wedge e^{c}\right)+\Lambda^{a b} \wedge\left(H_{a b c} \varepsilon^{c d e f} e_{d} \wedge e_{e} \wedge e_{f}-\mathrm{d} \phi \wedge e_{a} \wedge e_{b}\right) \\
& -\frac{1}{2 \cdot 4!} m^{2} \phi^{2} \varepsilon_{a b c d} e^{a} \wedge e^{b} \wedge e^{c} \wedge e^{d} .
\end{aligned}
$$

CLASSICAL THEORY

\rightarrow General relativity can be formulated as a $2 B F$ theory with constraints for a specific choice of a symmetry 2-group.
A. Miković and M. Vojinović, arXiv: 1110.4694.

- The advantage of this formulation of General Relativity over the formulation via $B F$ theory lies in the fact that the structure of the 2-group introduces tetrad fields into the topological action, allowing for matter coupling with gravity in a straightforward manner.
- However, matter fields cannot be naturally expressed within the algebraic structure of the 2-group, i.e., the matter sector in the action cannot be written as a sum of a topological term and constraint term.
- Another step of higher categorical generalization of the $B F$ theory is necessary - the so-called $3 B F$ theory.
\rightarrow The Einstein-Yang-Mills theories have been formulated, i.e., the theory of gravity and gauge fields as $2 B F$ theory with constraints.
\rightarrow Theories describing the Klein-Gordon and Dirac fields in curved space have been formulated as $3 B F$ action with constraints, as well as the Weyl and Majorana fields interacting with Einstein-Cartan gravity.
\rightarrow These results are then applied to construct $3 B F$ actions with constraints describing all matter present in the Standard Model coupled to the gravitational field.
- The advantage of this formulation lies in having the classical action of the complete theory written in a form prepared for the spinfoam quantization procedure.

GAUGE SYMMETRY IN 3BF THEORY

SYMMETRIES OF $3 B F$ ACTION

G-gauge transformations

In the $3 B F$ theory for a 2 -crossed module ($L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{pf}}$), the following transformation is a gauge symmetry:

$$
\begin{array}{rrrrll}
\alpha & \rightarrow & \alpha^{\prime}=\mathrm{Ad}_{g} \alpha+g \mathrm{~d} g^{-1}, & B & \rightarrow & B^{\prime}=g B g^{-1}, \\
\beta & \rightarrow & \beta^{\prime}=g \triangleright \beta, & C & \rightarrow & C^{\prime}=g \triangleright C, \\
\gamma & \rightarrow & \gamma^{\prime}=g \triangleright \gamma, & D & \rightarrow & D^{\prime}=g \triangleright D,
\end{array}
$$

where $g=\exp \left(\epsilon_{\mathfrak{g}} \cdot \hat{G}\right)=\exp \left(\epsilon_{\mathfrak{g} \alpha} \hat{G}^{\alpha}\right) \in G$ and $\epsilon_{\mathfrak{g}}: \mathcal{M}_{4} \rightarrow \mathfrak{g}$ is the transformation parameter.

H-gauge transformation

J. F. Martins and R. Picken, 2011, W. Wang, 2014.
\rightarrow In the $3 B F$ theory for a 2-crossed module $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},{ }_{-}\right\}_{\mathrm{pf}}\right.$), the following transformation is a symmetry:

$$
\begin{array}{rrrrrr}
\alpha & \rightarrow & \alpha^{\prime}=\alpha-\partial \epsilon_{\mathfrak{h}}, & B & \rightarrow & B^{\prime}=B-C^{\prime} \wedge^{\mathcal{T}} \epsilon_{\mathfrak{h}}-\epsilon_{\mathfrak{h}} \wedge^{\mathcal{D}} \epsilon_{\mathfrak{h}} \wedge^{\mathcal{D}} D, \\
\beta & \rightarrow & \beta^{\prime}=\beta-\nabla^{\prime} \epsilon_{\mathfrak{h}}-\epsilon_{\mathfrak{h}} \wedge \epsilon_{\mathfrak{h}}, & C & \rightarrow & C^{\prime}=C-D \wedge^{\prime} \mathcal{X}_{1} \epsilon_{\mathfrak{h}}-D \wedge^{\prime} \epsilon_{\mathfrak{h}}, \\
\gamma & \rightarrow & \gamma^{\prime}=\gamma+\left\{\beta^{\prime}, \epsilon_{\mathfrak{h}}\right\}_{\mathrm{pf}}+\left\{\epsilon_{\mathfrak{h}}, \beta\right\}_{\mathrm{pf}}, & D & \rightarrow & D^{\prime}=D,
\end{array}
$$

where $\epsilon_{\mathfrak{h}} \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{h}\right)$ is an arbitrary 1-form element of the algebra \mathfrak{h}.

L-gauge transformations

J. F. Martins and R. Picken, 2011., W. Wang, 2014.
\rightarrow In the $3 B F$ theory for a 2-crossed module ($L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},,_{-}\right\}_{\mathrm{pf}}$), the following transformation is a symmetry:

$$
\begin{array}{rrrlr}
\alpha & \rightarrow & \alpha^{\prime}=\alpha, & B & \rightarrow \\
B^{\prime}=B+D \wedge^{\mathcal{S}} \epsilon_{\mathfrak{l}}, \\
\beta & \rightarrow & \beta^{\prime}=\beta+\delta \epsilon_{\mathfrak{l}}, & C & \rightarrow \\
C^{\prime}=C, \\
\gamma & \rightarrow & \gamma^{\prime}=\gamma+\nabla \epsilon_{\mathfrak{l}}, & D & \rightarrow
\end{array}
$$

where $\epsilon_{\mathfrak{l}} \in \mathcal{A}^{2}\left(\mathcal{M}_{4}, \mathfrak{l}\right)$ is an arbitrary 2-form element of the algebra \mathfrak{r}.

SYMMETRIES OF 3BF ACTION

M-gauge transformations

\rightarrow In the $3 B F$ theory for a 2-crossed module $\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G\right.$, $\left.\triangleright,\left\{{ }_{-},{ }_{-}\right\}_{\mathrm{pf}}\right)$, the following transformation is a symmetry

$$
\begin{array}{rlllr}
\alpha & \rightarrow & \alpha^{\prime}=\alpha, & B & \rightarrow \\
B^{\prime}=B-\nabla \epsilon_{\mathfrak{m}}, \\
\beta & \rightarrow & \beta^{\prime}=\beta, & C^{a} & \rightarrow \\
C^{\prime a}=C^{a}-\partial^{a}{ }_{\alpha} \epsilon_{\mathfrak{m}}{ }^{\alpha}, \\
\gamma & \rightarrow & \gamma^{\prime}=\gamma, & D & \rightarrow
\end{array} \quad D^{\prime}=D,
$$

where $\epsilon_{\mathfrak{m}} \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{g}\right)$ is an arbitrary 1-form element of the algebra \mathfrak{g}.

N-gauge transformations

\rightarrow In the $3 B F$ theory for a 2-crossed module $\left(L \stackrel{\delta}{\rightarrow} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{-}\right\}_{\mathrm{pf}}$), the following transformation is a symmetry

$$
\begin{array}{llllr}
\alpha & \rightarrow & \alpha^{\prime}=\alpha, & B & \rightarrow \\
B^{\prime}=B-\beta \wedge^{\mathcal{T}} \epsilon_{\mathfrak{n}}, \\
\beta & \rightarrow & \beta^{\prime}=\beta, & C & \rightarrow
\end{array} \quad C^{\prime}=C-\nabla \epsilon_{\mathfrak{n}},
$$

where $\epsilon_{\mathfrak{n}}: \mathcal{M}_{4} \rightarrow \mathfrak{h}$ is an arbitrary function element of the algebra \mathfrak{h}.

GROUP OF GAUGE SYMMETRIES

\rightarrow We obtain that the Lie algebra \mathfrak{g} of the group G of a 2-crossed module $\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},{ }_{-}\right\}_{\mathrm{pf}}\right)$ is:

$$
\left[\hat{G}_{\alpha}, \hat{G}_{\beta}\right] \quad=\quad f_{\alpha \beta}^{\gamma} \hat{G}_{\gamma}
$$

\leftrightarrow Algebra of the group \tilde{H}_{L} (generators of H - and L-gauge transformations):

$$
\left[\hat{H}_{a}^{\mu}, \hat{H}_{b}^{\nu}\right]=2 X_{(a b)}^{A} \hat{L}_{A}^{\mu \nu}, \quad\left[\hat{L}_{A}^{\mu \nu}, \hat{L}_{B}^{\rho \sigma}\right]=0, \quad\left[\hat{H}_{a}^{\mu}, \hat{L}_{A}^{\nu \rho}\right]=0 .
$$

\hookrightarrow Groups \tilde{M} and \tilde{N} (generators of M-gauge transformations and N-gauge transformations)

$$
\left[\hat{M}_{\alpha}^{\mu}, \hat{M}_{\beta}^{\nu}\right]=0, \quad\left[\hat{N}_{a}, \hat{N}_{b}\right]=0, \quad\left[\hat{M}_{\alpha}^{\mu}, \hat{N}_{a}\right]=0 .
$$

\rightarrow Action of generators of the group \tilde{H}_{L} on generators of M - and N-gauge transformations:

$$
\left.\begin{array}{llllll}
{\left[\hat{H}_{a}^{\mu}, \hat{N}^{b}\right]} & = & \nabla_{\alpha a}^{b} \hat{M}^{\alpha \mu}, & {\left[\hat{H}_{a}^{\mu}, \hat{M}_{\alpha}^{\nu}\right]} & =0, \\
{\left[\hat{L}_{A}^{\nu \rho}, \hat{M}_{\alpha}^{\mu}\right]} & = & 0, & {\left[\hat{L}_{A}^{\mu \nu}, \hat{N}_{a}\right]} & =0
\end{array}\right]
$$

\rightarrow Action of generators of group G on generators of $\mathrm{H}^{-}, L^{-}, \mathrm{M}$ - and N -gauge transformations:

GROUP OF GAUGE SYMMETRIES

\rightarrow Summarizing the previous results, we find that the gauge symmetry group $\mathcal{G}_{3 B F}$ has the structure:

$$
\mathcal{G}_{3 B F}=\tilde{G} \ltimes\left(\tilde{H}_{L} \ltimes(\tilde{N} \times \tilde{M})\right) .
$$

TR and M. Vojinović, arXiv: 2101.04049.

DIFFEOMORPHISM SYMMETRY $\operatorname{Diff}\left(\mathcal{M}_{4}, \mathbb{R}\right)$

\rightarrow Any action depending on at least two fields $\phi_{1}(x)$ and $\phi_{2}(x)$ is invariant under the following transformation, determined by the HT parameter ϵ^{HT} :

$$
\delta_{0}{ }^{\mathrm{HT}} \phi_{1}=\epsilon^{\mathrm{HT}}(x) \frac{\delta S}{\delta \phi_{2}}, \quad \delta_{0}{ }^{\mathrm{HT}} \phi_{2}=-\epsilon^{\mathrm{HT}}(x) \frac{\delta S}{\delta \phi_{1}},
$$

which can be easily verified by calculating the variation of the action:

$$
\delta^{\mathrm{HT}} S\left[\phi_{1}, \phi_{2}\right]=\frac{\delta S}{\delta \phi_{1}} \delta_{0}{ }^{\mathrm{HT}} \phi_{1}+\frac{\delta S}{\delta \phi_{2}} \delta_{0}{ }^{\mathrm{HT}} \phi_{2}=0 .
$$

\rightarrow If diffeomorphisms are symmetries of the action, then for every field $\phi(x)$ in the theory, and every parameter of diffeomorphisms $\xi^{\mu}(x)$, there exists a choice of parameters $\epsilon_{i}(x)$ and $\epsilon^{\mathrm{HT}}(x)$, such that:

$$
\left(\delta_{0}{ }^{\text {gauge }}+\delta_{0}{ }^{\mathrm{HT}}+\delta_{0}{ }^{\text {diff }}\right) \phi=0 .
$$

If diffeomorphisms are symmetries of the theory, their variation of the form can be expressed in terms of variations of the form corresponding to gauge and HT transformations:

$$
\delta_{0}{ }^{\text {diff }} \phi=-\delta_{0}{ }^{\text {gauge }} \phi-\delta_{0}{ }^{\mathrm{HT}} \phi
$$

DIFFEOMORPHISM SYMMETRY $\operatorname{Diff}\left(\mathcal{M}_{4}, \mathbb{R}\right)$

$\rightarrow \mathrm{HT}$ variations of forms are defined as:

$$
\begin{aligned}
& \delta_{0}{ }^{\mathrm{HT}} \alpha^{\alpha}{ }_{\mu}=\frac{1}{2} \epsilon^{\mathrm{HT} \alpha \beta}{ }_{\mu \nu \rho} \frac{\delta S}{\delta B^{\beta}{ }_{\nu \rho}}, \\
& \delta_{0}{ }^{\mathrm{HT}_{\beta^{a}}{ }_{\mu \nu}=\epsilon^{\mathrm{HT} a b}{ }_{\mu \nu \rho} \frac{\delta S^{\rho}}{\delta C^{b} \rho},} \\
& \delta_{0}{ }^{\mathrm{HT}} \gamma^{A}{ }_{\mu \nu \rho}=\epsilon^{\mathrm{HT} A B}{ }_{\mu \nu \rho} \frac{\delta S^{\rho}}{\delta D^{B}}, \\
& \delta_{0}{ }^{\mathrm{HT}} B^{\alpha}{ }_{\mu \nu}=-\epsilon^{\mathrm{HT} \alpha \beta}{ }_{\rho \mu \nu} \frac{\delta S}{\delta \alpha^{\beta}{ }^{\beta}}, \\
& \delta_{0}{ }^{\mathrm{HT}} C^{a}{ }_{\mu}=-\frac{1}{2} \epsilon^{\mathrm{HT} a b}{ }_{\nu \rho \mu} \frac{\delta S^{\rho}}{\delta \beta^{b}{ }_{\nu \rho}} \text {, } \\
& \delta_{0}{ }^{\mathrm{HT}} D^{A}=-\frac{1}{3!} \epsilon^{\mathrm{HT} A B}{ }_{\mu \nu \rho} \frac{\delta S^{\nu \rho}}{\delta \gamma^{B}{ }_{\mu \nu \rho}},
\end{aligned}
$$

\rightarrow The parameters of HT transformations are $\epsilon^{\mathrm{HT} \alpha \beta}{ }_{\mu \nu \rho}, \epsilon^{\mathrm{HT} a b}{ }_{\mu \nu \rho}$, and $\epsilon^{\mathrm{HT} A B}{ }_{\mu \nu \rho}$.
\rightarrow The parameters of gauge transformations are $\epsilon_{\mathfrak{g}}{ }^{\alpha}, \epsilon_{\mathfrak{h}}{ }^{a}{ }_{\mu}, \epsilon_{\mathfrak{l}}{ }^{A}{ }_{\mu \nu}, \epsilon_{\mathfrak{m}}{ }^{\alpha}{ }_{\mu}$, and $\epsilon_{\mathfrak{n}}{ }^{a}$.

There is a choice that gives diffeomorphisms!

$$
\begin{array}{r}
\epsilon_{\mathfrak{g}}{ }^{\alpha}=-\xi^{\lambda} \alpha^{\alpha}{ }_{\lambda}, \quad \epsilon_{\mathfrak{h}}{ }^{a}{ }_{\mu}=\xi^{\lambda} \beta^{a}{ }_{\mu \lambda}, \quad \epsilon_{\mathfrak{l}}{ }^{A}{ }_{\mu \nu}=\xi^{\lambda} \gamma^{A}{ }_{\mu \nu \lambda}, \quad \epsilon_{\mathfrak{m}}{ }^{\alpha}{ }_{\mu}=\xi^{\lambda} B^{\alpha}{ }_{\mu \lambda}, \quad \epsilon_{\mathfrak{n}}{ }^{a}=-\xi^{\lambda} C^{a}{ }_{\lambda}, \\
\epsilon^{\mathrm{HT} \alpha \beta}{ }_{\mu \nu \rho}=\xi^{\lambda} g^{\alpha \beta} \epsilon_{\mu \nu \rho \lambda}, \quad \epsilon^{\mathrm{HT} a b}{ }_{\mu \nu \rho}=\xi^{\lambda} g^{a b} \epsilon_{\lambda \mu \nu \rho}, \quad \epsilon^{\mathrm{HT} A B}{ }_{\mu \nu \rho}=\xi^{\lambda} g^{A B} \epsilon_{\mu \nu \rho \lambda},
\end{array}
$$

\rightarrow Hence, $\underline{3 B F}$ theory is invariant under diffeomorphism transformations.
\rightarrow Diffeomorphisms are a subgroup of the semidirect product of the total gauge symmetry group $\mathcal{G}_{3 B F}$ and the HT transformation group $\mathcal{G}_{H T}$.

$$
\operatorname{Diff}\left(\mathcal{M}_{4}\right) \notin \mathcal{G}_{3 B F}, \text { but } \quad \operatorname{Diff}\left(\mathcal{M}_{4}\right) \subset \mathcal{G}_{\text {total }}=\mathcal{G}_{3 B F} \times \mathcal{G}_{H T}
$$

Group of gauge symmetries of 3BF Action

\rightarrow After the Hamiltonian analysis of the theory, computing the generators using the Castellani procedure, and calculating their commutators, it was found that the $3 B F$ theory is invariant under five types of gauge transformations - G-gauge, H-gauge, L-gauge, M-gauge, and N-gauge transformations.
\rightarrow We analyzed the structure of the complete gauge symmetry group $\mathcal{G}_{3 B F}$ - a connection between the gauge symmetry group of the $3 B F$ action and the structure of the 3 -group on which the $3 B F$ action is based was obtained.
\rightarrow As expected, it is established that the $3 B F$ theory has diffeomorphism symmetry.
TR and M. Vojinović, arXiv: 2101.04049.
\rightarrow The explicit symmetry breaking of the gauge group of the topological $3 B F$ sector, due to the presence of the constraints, has been studied. Each constraint was studied separately, and it is analyzed which gauge sector is being broken by which constraint.
P. Stipsić and M. Vojinović, arXiv: 2402.17675.
\rightarrow In addition, the spontaneous symmetry breaking and the Higgs mechanism for the $3 B F$ formulation of the electroweak model has been studied. While the Higgs mechanism is conceptually the same as in the ordinary electroweak theory, the structure and details of the $3 B F$ formulation are very different from the standard textbook approach, so much that the complete procedure of spontaneous symmetry breaking had to be done anew.

construction of $3 B F$ state sum

QUANTIZATION OF TOPOLOGICAL $3 B F$ THEORY

Construction of the topological $3 B F$ state sum based on the $S_{3 B F}$ action using the standard spinfoam quantization procedure.

$$
Z=\int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \gamma \mathcal{D} B \mathcal{D} C \mathcal{D} D \exp \left(i \int_{M_{4}}\langle B \wedge \mathcal{F}\rangle_{\mathfrak{g}}+\langle C \wedge \mathcal{G}\rangle_{\mathfrak{h}}+\langle D \wedge \mathcal{H}\rangle_{\mathfrak{l}}\right)
$$

\rightarrow By formally integrating over the Lagrange multipliers B, C, and D, we obtain:

$$
Z=\mathcal{N} \int \mathcal{D} \alpha \mathcal{D} \beta \mathcal{D} \gamma \delta(\mathcal{F}) \delta(\mathcal{G}) \delta(\mathcal{H})
$$

\rightarrow Discretization of the 3-connection:

- $\alpha \in \mathcal{A}^{1}\left(\mathcal{M}_{4}, \mathfrak{g}\right) \mapsto g_{\epsilon} \in G$ colors the edges $\epsilon=(j k) \in \Lambda_{1}$,
- $\beta \in \mathcal{A}^{2}\left(\mathcal{M}_{4}, \mathfrak{h}\right) \mapsto h_{\Delta} \in H$ colors the triangles $\Delta=(j k \ell) \in \Lambda_{2}$,
- $\gamma \in \mathcal{A}^{3}\left(\mathcal{M}_{4}, \mathfrak{l}\right) \leftrightarrow l_{\tau} \in L$ colors the tetrahedra $\tau=(j k \ell m) \in \Lambda_{3}$.

$$
\begin{array}{rll}
\int \mathcal{D} \alpha & \mapsto & \prod_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k} \\
\int \mathcal{D} \beta & \mapsto & \prod_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell} \\
\int \mathcal{D} \gamma & \mapsto & \prod_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k \ell m}
\end{array}
$$

QUANTIZATION OF TOPOLOGICAL 3BF THEORY

\rightarrow The condition $\delta(\mathcal{F})$ is discretized as

$$
\delta(\mathcal{F})=\prod_{(j k \ell) \in \Lambda_{2}} \delta_{G}\left(g_{j k \ell}\right), \quad \delta_{G}\left(g_{j k \ell}\right)=\delta_{G}\left(\partial\left(h_{j k \ell}\right) g_{k \ell} g_{j k} g_{j \ell}^{-1}\right) .
$$

\rightarrow The condition $\delta(\mathcal{G})$ is discretized as

$$
\begin{gathered}
\delta(\mathcal{G})=\prod_{(j k \ell m) \in \Lambda_{3}} \delta_{H}\left(h_{j k \ell m}\right), \\
\delta_{H}\left(h_{j k \ell m}\right)=\delta_{H}\left(\delta\left(l_{j k \ell m}\right) h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) h_{k \ell m}^{-1} h_{j k m}^{-1}\right) .
\end{gathered}
$$

\rightarrow The condition $\delta(\mathcal{H})$ is discretized as

$$
\delta(\mathcal{H})=\prod_{(j k \ell m n) \in \Lambda_{4}} \delta_{L}\left(l_{j k \ell m n}\right),
$$

$\delta_{L}\left(l_{j k \ell m n}\right)=\delta_{L}\left(l_{j \ell m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n} g_{\ell m}\right) \triangleright h_{j k \ell}\right\}_{\mathrm{p}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)\right)$.
...we obtain \Longrightarrow
$Z=\mathcal{N} \prod_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k} \prod_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell} \prod_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k \ell m}\left(\prod_{(j k \ell) \in \Lambda_{2}} \delta_{G}\left(g_{j k \ell}\right)\right)\left(\prod_{(j k \ell m) \in \Lambda_{3}} \delta_{H}\left(h_{j k \ell m}\right)\right)\left(\prod_{(j k \ell m n) \in \Lambda_{4}} \delta_{L}\left(l_{j k \ell m n}\right)\right)$.
This expression becomes independent of the manifold triangulation by appropriate choice of the factor \mathcal{N}.

QUANTIZATION OF TOPOLOGICAL 3BF THEORY

Let \mathcal{M}_{d} be a compact oriented combinatorial d-manifold, $d=4$, and let $\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright,\left\{_{-},\right\}_{\mathrm{pf}}\right.$) be a 2 -crossed module. The state sum of the topological 3 -gauge theory is defined by the following expression:

$$
\begin{aligned}
Z= & |G|^{-\left|\Lambda_{0}\right|+\left|\Lambda_{1}\right|-\left|\Lambda_{2}\right|}|H|^{\left|\Lambda_{0}\right|-\left|\Lambda_{1}\right|+\left|\Lambda_{2}\right|-\left|\Lambda_{3}\right|}|L|^{-\left|\Lambda_{0}\right|+\left|\Lambda_{1}\right|-\left|\Lambda_{2}\right|+\left|\Lambda_{3}\right|-\left|\Lambda_{4}\right|} \\
& \times\left(\prod_{(j k) \in \Lambda_{1}} \int_{G} d g_{j k}\right)\left(\prod_{(j k \ell) \in \Lambda_{2}} \int_{H} d h_{j k \ell}\right)\left(\prod_{(j k \ell m) \in \Lambda_{3}} \int_{L} d l_{j k \ell m}\right) \\
& \times\left(\prod_{(j k \ell) \in \Lambda_{2}} \delta_{G}\left(\partial\left(h_{j k \ell)} g_{k \ell} g_{j k} g_{j \ell}^{-1}\right)\right)\left(\prod_{(j k \ell m) \in \Lambda_{3}} \delta_{H}\left(\delta\left(l_{j k \ell m}\right) h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) h_{k \ell m}^{-1} h_{j k m}^{-1}\right)\right)\right. \\
& \times\left(\prod _ { (j k \ell m n) \in \Lambda _ { 4 } } \delta _ { L } \left(l_{j \ell m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n n} g_{\ell m)} \triangleright h_{j k \ell\}_{\mathrm{P}}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)\right)\right)\right.\right.
\end{aligned}
$$

Where $\left|\Lambda_{0}\right|$ denotes the number of vertices, $\left|\Lambda_{1}\right|$ the number of edges, $\left|\Lambda_{2}\right|$ triangles, $\left|\Lambda_{3}\right|$ tetrahedra, and $\left|\Lambda_{4}\right|$ the number of 4 -simplices in the triangulation.
\hookrightarrow TR and M. Vojinović, arXiv: 2201.02572.
\leftrightarrow Behavior under Pachner moves has been analyzed.

Pachner moves

\rightarrow We analyzed the behavior of the constructed state sum under Pachner moves. Pachner moves are local changes to triangulations that preserve topology, so any two triangulations of the same manifold are connected by a finite number of Pachner moves.
\rightarrow In the $3 D$ case, there are four Pachner moves - moves $1 \leftrightarrow 4$ and $2 \leftrightarrow 3$ and their inverses, while in $4 D$ there are five distinct Pachner moves - moves $3 \leftrightarrow 3,4 \leftrightarrow 2$, and $5 \leftrightarrow 1$ and their inverses.

Pachner moves in $4 D$
(5)

QUANTIZATION

$2 B F$ topological state sum

\rightarrow We construct the $2 B F$ action for a general strict 2-group and any triangulation of any smooth d-dimensional spacetime manifold, $d \in\{3,4\}$.
\rightarrow For $d=3$, the constructed state sum is precisely the Jetter's model.
\rightarrow For $d=4$, it coincides with Porter's TQFT for $d=4$ and $n=2$.
$\rightarrow 2 B F$ state sum is a topological invariant of the manifold.
\rightarrow Girelli, Pfeiffer, Popescu, arXiv: 0708.3051. Miković, Martins, arXiv: 1006.0903.
\rightarrow Representation theory for 2-groups (including the Poincare 2-group), has been developed in great detail.

Baez, Baratin, Freidel, Wise arXiv: 0812.4969.
\rightarrow The topological invariant and TQFT for the Euclidean 2-group ($G=S O(4), H=\mathbb{R}^{4}$) has also been studied in detail.

Asante, Dittrich, Girelli, Riello, Tsimiklis arXiv: 1908.05970.

$2 B F$ state sum

\rightarrow For Poincare 2-group and $2 B F$ action for GR, one possible quantization prescription leads to the spincube model.
A. Miković and M. Vojinović, arXiv: 1110.4694.

$3 B F$ topological state sum

\rightarrow We formulate the $3 B F$ state sum for the classical $3 B F$ action in the case of a general semi-strict 3-group and 4-dimensional spacetime manifold.
\rightarrow It matches Porter's abstract definition of TQFT for $d=4$ and $n=3$.
\rightarrow We find that it is a topological invariant of the manifold.TR and M. Vojinović, arXiv: 2201.02572.

SECOND AND THIRD STEP OF THE QUANTIZATION PROCEDURE

\rightarrow The state sum for the $3 B F$ topological theory is obtained.
\rightarrow However, to complete the second step of the covariant spinfoam quantization procedure, it is necessary to have generalizations of the Peter-Weyl and Plancherel theorems for the cases of 2-groups and 3-groups, mathematical results that are currently open problems.
\rightarrow These theorems should provide a decomposition of functions on a 3-group into a sum over the corresponding irreducible representations of the 3-group.
\rightarrow This determines the spectrum of labels of the simplices of the triangulation, i.e., the range of values of fields living on the simplices of the triangulation, as was done in the case of the $B F$ state sum.
\rightarrow Current attempts of the second step of quantization of generalized $B F$ theories in the framework of higher gauge theories boil down to guessing irreducible representations of 2-groups.
\rightarrow This result opens a way to the third and final step of the covariant quantization procedure and the formulation of the quantum theory of gravity and matter of the Standard Model by imposing appropriate constraints on the variables through modification of the amplitudes of the state sum.

CONCLUSION

\rightarrow First step of the covariant spinfoam quantization procedure. Classical theory. Successfully formulated constrained $3 B F$ actions describing gravitational and Yang-Mills, scalar, and Dirac fields.
\rightarrow Gauge group of symmetries of the topological $3 B F$ action. - Complete Hamiltonian analysis of the $3 B F$ action was performed, and the generator of gauge transformations was found. It was obtained that the $3 B F$ theory is invariant under five types of gauge transformations: G-gauge, H-gauge, L-gauge, M-gauge, and N-gauge transformations.
\rightarrow Second step of the covariant spinfoam quantization procedure. - Constructed the $3 B F$ state sum and proved its invariance under Pachner moves, i.e., that it is a topological invariant of the manifold.
\rightarrow Third step of the covariant spinfoam quantization procedure. - Work in progress!
\rightarrow Nontrivial choices of the 3-group structure may provide new avenues for research on unification of all fields.

Thank you for your attention!

Dirac Field

Dirac Field $D=\psi^{\alpha} P_{\alpha}+\bar{\psi}_{\alpha} P^{\alpha}$

\rightarrow 2-crossed module $\left(L \xrightarrow{\delta} H \xrightarrow{\partial} G, \triangleright,\left\{-,{ }_{-}\right\}\right)$:

- $G=S O(3,1), \quad H=\mathbb{R}^{4}, \quad L=\mathbb{R}^{8}$ (Grassmannians),
$\triangleright M_{a b} \triangleright P_{c}=\left[M_{a b}, P_{c}\right], \quad M_{a b} \triangleright P_{\alpha}=\frac{1}{2}\left(\sigma_{a b}\right)^{\beta}{ }_{\alpha} P_{\beta}, \quad M_{a b} \triangleright P^{\alpha}=-\frac{1}{2}\left(\sigma_{a b}\right)^{\alpha}{ }_{\beta} P^{\beta}$,
- $\partial\left(P_{a}\right)=0, \quad \delta\left(T_{A}\right)=0, \quad\left\{P_{a}, P_{b}\right\}=0$.
$\rightarrow 3$-connection $(\alpha, \beta, \gamma): \alpha=\omega^{a b} M_{a b}, \quad \beta=\beta^{a} P_{a}, \quad \gamma=\gamma^{\alpha} P_{\alpha}+\bar{\gamma}_{\alpha} P^{\alpha}$.
$\rightarrow 3$-curvature $(\mathcal{F}, \mathcal{G}, \mathcal{H})$:

$$
\begin{aligned}
\mathcal{F}=R^{a b} M_{a b}, \quad \mathcal{G}=\nabla \beta^{a} P_{a}, \\
\mathcal{H}=\left(\mathrm{d} \gamma^{\alpha}+\frac{1}{2} \omega^{a b}\left(\sigma_{a b}\right)^{\alpha}{ }_{\beta} \gamma^{\beta}\right) P_{\alpha}+\left(\mathrm{d} \bar{\gamma}_{\alpha}-\frac{1}{2} \omega^{a b} \bar{\gamma}_{\beta}\left(\sigma_{a b}\right)^{\beta}{ }_{\alpha}\right) P^{\alpha} \\
\equiv(\vec{\nabla} \gamma)^{\alpha} P_{\alpha}+(\bar{\gamma} \overleftarrow{\nabla})_{\alpha} P^{\alpha} .
\end{aligned}
$$

\rightarrow Topological action:

$$
S_{3 B F}=\int_{\mathcal{M}_{4}} B^{a b} \wedge R_{a b}+e_{a} \wedge \nabla \beta^{a}+(\bar{\gamma} \overleftarrow{\nabla})_{\alpha} \psi^{\alpha}+\bar{\psi}_{\alpha}(\vec{\nabla} \gamma)^{\alpha}
$$

3-GAUGE THEORY ON TRIANGULATION

\rightarrow Classical equations of motion impose the condition that the gauge connection is flat - that every null-homotopic curve corresponds to the identity of the gauge group. \rightarrow Within higher gauge theories, this condition is generalized by requiring that the surface holonomy of the boundary 2-sphere of every 3-ball be trivial.
\rightarrow In the context of 3-gauge theory, the first condition remains unchanged, the second condition is generalized, while it is necessary to add the condition of flatness of the boundary volume of the 4-simplex.

Lemma 1

 Zireli, Pfajfer, and Popesku arXiv: 0708.3051.Consider the triangle ($j k \ell$). The edges $(j k)$ are labeled by group elements $g_{j k} \in G$ and the triangles $(j k \ell)$ by elements $h_{j k \ell} \in H$.

The curvature $\gamma_{1}=g_{k \ell} g_{j k}$ is the source, and the curvature $\gamma_{2}=g_{j \ell}$ is the target of the surface 2 -morphism $\Sigma: \gamma_{1} \rightarrow \gamma_{2}$, labeled by the group element $h_{j k \ell}$,

$$
g_{j \ell}=\partial\left(h_{j k \ell}\right) g_{k \ell} g_{j k}
$$

3-GAUGE THEORY ON TRIANGULATION

Lemma 2

Consider the tetrahedron ($j k \ell m$). The tetrahedra ($j k \ell m$) are labeled by group elements $l_{j k \ell m} \in L$.

The mapping of the surface $\Sigma_{1}: g_{\ell m} g_{k \ell} g_{j k} \rightarrow g_{j m}$ to the surface $\Sigma_{2}: g_{\ell m} g_{k \ell} g_{j k} \rightarrow g_{j m}$ is determined by the element $l_{j k \ell m}$:

$$
h_{j k m} h_{k \ell m}=\delta\left(l_{j k \ell m}\right) h_{j \ell m}\left(g_{\ell m} \triangleright h_{j k \ell}\right) .
$$

3-GAUGE THEORY

Lemma 3

We consider a 4-simplex, $(j k \ell m n)$. We cut the 4 -simplex volume along the surface $h_{j m n} g_{m n} \triangleright\left(h_{j \ell m} g_{\ell m} \triangleright h_{j k \ell}\right)$.

$h_{j k n} \stackrel{\nabla i_{k e m n}}{\Rightarrow}$

\qquad

This brings us back to the initial surface!

The obtained 3-morphism is the identity 3-morphism with source and target
$\Sigma_{1}=\Sigma_{2}=h_{j m n} g_{m n} \triangleright\left(h_{j \ell m} g_{\ell m} \triangleright h_{j k \ell}\right)$,
$l_{j \ell m n}^{-1} h_{j \ell n} \triangleright^{\prime}\left\{h_{\ell m n},\left(g_{m n} g_{\ell m)} \triangleright h_{j k \ell}\right\}_{\mathrm{p}} l_{j k \ell n}^{-1}\left(h_{j k n} \triangleright^{\prime} l_{k \ell m n}\right) l_{j k m n} h_{j m n} \triangleright^{\prime}\left(g_{m n} \triangleright l_{j k \ell m}\right)=e\right.$.

