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A SKETCH OF THE TALK

▸ 3-group and 3-gauge theory
↪ based on R. Picken and J. Faria Martins, arXiv:0907.2566.

▸ 3BF action
↪ Models with relevant dynamics

based on A. Miković and M. Vojinović, arXiv: 1110.4694, and TR and M. Vojinović, arXiv:1904.07566.

▸ Gauge symmetry of 3BF theory
↪ G-,H-,L-,M-, andN-gauge transformations and diffeomorphisms, TR and M. Vojinović, arXiv: 2101.04049.

▸ Quantization of the topological 3BF theory
↪ the state sum Z is an example of Porter’s TQFT for d = 4 and n = 3 T. Porter (1998),

based on TR and M. Vojinović, arXiv: 2201.02572.
↪ The construction of the state sum Z and a proof that the 3BF state sum is invariant under Pachner moves.

TR and M. Vojinović, arXiv: 2201.02572.
↪ This is a generalization of the state sum based on the classical 2BF action with the underlying 2-group

structure
F. Girelli, H. Pfeiffer and E. M. Popescu, arXiv:0708.3051.

▸ Conclusions



INTRODUCTION



SPINFOAM QUANTIZATION PROCEDURE

↪ The goal is to define the configurational integral Z = ∫ DϕeiS[ϕ]. On a discretized
D-dimensional manifold, we define the state sum:

Z = ∑
{ϕ}
∏
v∈T
Av(ϕ)∏

ϵ∈T
Aϵ(ϕ)⋯∏

σ∈T
Aσ(ϕ).

∙ The triangulation T (MD) of the manifoldMD contains vertices v, edges ϵ, faces∆, tetrahedra

τ ,...,D-simplices σ.

∙ Each of these simplices is colored with color ϕ - describing the fundamental variables of the model.

∙ To each simplex is assigned an amplitudeA - describing the dynamics of variable ϕ.

1. Write the action in the appropriate form:

SGR[g] = Stop[g] + Sconstraints[g].

2. Construct the topological state sum:

Z = ∫ DgeiStop .

3. By modifying amplitudes in a certain way, we define the state sum corresponding to
the complete theory:

Z = ∫ DgeiStop+iSconstraints .
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MODELS OF QUANTUM GRAVITY

Theories of quantum gravity within the covariant approach are defined by quantizing
the BF theory with constraints for the Lie group G,

SBF = ∫
M4
⟨B ∧ F ⟩g, .

↪ Ponzano-Regge model of 3D gravity for the SU(2) group. Ponzano and Regge, 1968.

↪ Barrett-Crane model of 4D gravity for SO(3, 1). Barrett and Crane, 1998.

↪ EPRL/FK model of 4D gravity, also known as the spinfoam model.

J. Engle, R. Pereira, E. Livine, and K. Rovelli, and L. Freidel and K. Krasnov, 2008.

↪ All these models are focused on defining the theory of pure gravity without matter.

↪ Attempts to add matter fields into the theory have had limited success, mainly due
to the fact that mass terms cannot be expressed within these theories (tetrad fields
are not present in the topological sector of the BF theory).
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MODELS OF QUANTUM GRAVITY

↪ In order to overcome the issue of matter coupling in BF models of quantum gravity,
a new approach is developed within the framework of category theory, based on a
categorical generalization of the BF action – the so-called 2BF action (BFCG action).

S2BF = ∫
M4
⟨B ∧F⟩g + ⟨C ∧G⟩h .

↪ Spin-cube model of 4D gravity for the Poincaré 2-group. A. Miković and M. Vojinović, 2012.

↪ This result has opened the possibility of coupling matter with gravity in a linear
fashion.
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CROSSED MODULE

↪ In the framework of category theory, the group as an algebraic structure can be understood as a category with
only one object and invertible morphisms

↪ The notion of a category can be generalized to the so-called higher categories, which have not only objects and
morphisms, but also 2-morphisms (morphisms between morphisms), and so on.

↪ Similarly to the notion of a group, one can introduce a 2-group as a 2-category consisting of only one object,
where all the morphisms and 2-morphisms are invertible.

↪ A 2-group is equivalent to a crossed module (H ∂→G,⊳):
↪ G is a group with composition of morphisms as the group operation

● ●

g

ww
●

g′

ww = ● ●

gg′

ww ,

↪ H is a group consisting of all 2-morphisms having the identity morphism as the source

● ●

1●
vv

∂h

hh h�� ●

1●
vv

∂h′

hh h′��
= ● ●

1●

ww

∂(hh′)

gg hh′��
,

↪ Action ofG onH given by the operation ⊳∶ G→ Aut(H)

● ●

g

vv

g

hh 1g�� ●

1●
vv

∂h

hh h�� ●

g−1

vv

g−1

hh 1−1g��
= ● ●

1
vv

∂(g⊳h)

hh g⊳h��
,

↪ Group homomorphism ∂ ∶H →G

● ●

1●

ww

∂h

gg h��
.
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CONSTRAINED 2BF ACTION FOR GRAVITY

Gravity A. Miković and M. Vojinović, arXiv: 1110.4694.

↪ Crossed module (H ∂→ G,⊳):

▸G = SO(3, 1) , H = R4 ,

▸Mab ⊳ Pc = [Mab,Pc] ,

▸ ∂(τα) = 0 .

↪ 2-connection (α,β): α = ωabMab , β = βaPa .

↪ 2-curvature (F ,G): F = RabMab , G = ∇βPa .

↪ Topological action:

S2BF = ∫
M4

Bab ∧Rab + ea ∧∇βa .

↪ Constrained action:

S = ∫
M4

Bab ∧Rab + ea ∧∇βa − λab ∧ (Bab −
1

16πl2p
εabcdec ∧ ed) .
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CATEGORICAL LADDERS

↪ Although the group structure is sufficient to describe gauge fields and the structure
of 2-groups has been successfully applied to describe the gravitational field, they
are insufficient to describe other matter fields, such as scalar and fermionic fields.

↪ To describe these fields, it is necessary to take another step in the categorical
ladder, a categorical generalization of the algebraic structure of 2-groups to the
structure of 3-groups.

↪ It turns out that the structure of 3-groups successfully describes all fields present in
the Standard Model coupled to gravity.

8 / 35



3-GROUPS

2-crossed module (L δ→H
∂→ G, ⊳, {_, _}p)

↪ Groups G, H , and L;

↪ Mappings ∂ and δ (∂δ = 1G);

↪ Action ⊳ of group G on all three groups;

↪ Mapping {_, _}p – Paiffer lifting:

{_, _}p ∶ H ×H → L .

These groups and mappings must satisfy certain axioms in order to form a 2-crossed module:

1. δ({h1, h2}p) = ⟨h1 , h2⟩p , ∀h1, h2 ∈H ,

2. [l1, l2] = {δ(l1) , δ(l2)}p , ∀l1 , l2 ∈ L. Notation is [l, k] = lkl
−1

k
−1 ;

3. {h1h2, h3}p = {h1, h2h3h
−1
2 }p∂(h1) ⊳ {h2, h3}p , ∀h1, h2, h3 ∈H ;

4. {h1, h2h3}p = {h1, h2}p{h1, h3}p{⟨h1, h3⟩
−1
p , ∂(h1) ⊳ h2}p , ∀h1, h2, h3 ∈H ;

5. {δ(l), h}p{h, δ(l)}p = l(∂(h) ⊳ l
−1), ∀h ∈H , ∀l ∈ L.
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3-GAUGE THEORY

3-group, i.e., 2-crossed module allows us to describe 3-gauge theory.

↪ The structure of 2-crossed module leads to 3-connections, ordered triples (α,β, γ),
where α, β, and γ are differential form elements of algebras,

α = αα
µ τα dxµ , α ∈ A1(M4, g) ,

β = βa
µν ta dxµ ∧ dxν , β ∈ A2(M4, h) ,

γ = γAµνρ TA dxµ ∧ dxν ∧ dxρ , γ ∈ A3(M4, l) .

↪ Then we define line, surface, and volume holonomies,

g = exp∫
γ
α , h = exp∫

S
β , l = exp∫

V
γ .

↪ The corresponding fake 3-curvature (F ,G,H) is defined as:

F = dα + α ∧ α − ∂β , G = dβ + α ∧⊳ β − δγ ,
H = dγ + α ∧⊳ γ + {β ∧ β}pf .
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3BF THEORY

↪ For a manifoldM4 and a 2-crossed module (L
δ→H

∂→ G,⊳ ,{_ , _}pf), or
3-curvature (F ,G,H), the 3BF action is defined as:

S3BF = ∫
M4
⟨B ∧F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l .

▸ 3BF theory is a topological theory,

▸ it relies on the structure of a 3-group,

▸ it’s a generalization of the BF topological theory based on the group structureG.

↪ Physical interpretation of Lagrange multipliers C and D:

▸ 1-form C with values in the algebra h can be interpreted as the tetrad field ifH = R4 :

C → e = eaµ(x)tadxµ ,

A. Miković and M. Vojinović, arXiv: 1110.4694.

▸ functionD with values in the algebra l can be interpreted as a set of real fields, for an appropriate choice of

group L:

D → ϕ = ϕA(x)TA .
11 / 35



3BF THEORY

2-crossed module for (trivial) Standard Model:

▸ Groups

G = SO(3, 1) × SU(3) × SU(2) ×U(1) , H = R4 , L − matter sector ;

▸ Mappings δ and ∂ are trivial — for all l ∈ L and v⃗ ∈H , we define

δl = 1H = 0 , ∂v⃗ = 1G ;

▸ Paiffer lifting is trivial - for all u⃗, v⃗ ∈H , we define

{u⃗, v⃗}pf = 1L ;

▸ Action ⊳ of group G on itself is in the adjoint representation;

▸ Action ⊳ of group G on H is in the vector representation for the SO(3, 1) sector and
in the trivial representation for the SU(3) × SU(2) ×U(1) sector;

▸ Action of group G on L is non-trivial and depends on the choice of group L -
determines the transformation properties of fields.
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GROUP L

How do we choose the group L?

↪ Since ϕ = ϕATA , we have one real field ϕA(x) for each generator of the group L.

↪ How many real fields are needed to describe the matter sector of the Standard
Model?

Lepton 1st generation
Red color

1st generation quarks
Green color

1st generation quarks
Blue color

1st generation quarks

(νe
e−
)
L

(ur
dr
)
L

(ug
dg
)
L

(ub
db
)
L

(νe)R (ur)R (ug)R (ub)R

(e−)R (dr)R (dg)R (db)R
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GROUP L

↪ How many real components of fields do we have in the matter sector of the
Standard Model?

▸ Fermion sector:

16 spinors
family

× 3 families × 4 real fields
spinor

= 192 real fieldsϕA.

▸ Higgs sector:
2 complex scalar fields = 4 real fieldsϕA.

▸ We obtain that the group structure L:

L = Lfermion ×LHiggs , dimLfermion = 192 , dimLHiggs = 4 .

↪ The action G ⊳ L→ L determines the transformation properties of the real fields
ϕA under Lorentz and internal transformations.

↪ G acts in the same way in each family, so the group L has the structure:

Lfermion = L1st family ×L2ndfamily ×L3rdfamily , dimLk−thfamily = 64 .
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FORMULATION OF THE CLASSICAL THEORY

↪ The action G ⊳ L→ L determines the transformation properties of the real fields
ϕA under Lorentz and internal transformations.

For example, consider a doublet (ub
db
)
L

. The action g ⊳ ub encodes that ub consists

of 4 real-valued fields which transform as:
∙ a left-handed spinor wrt. SO(3, 1),
∙ as a “blue” component of the fundamental representation of SU(3),

∙ and as ”isospin +
1
2
” of the left doublet wrt. SU(2) ×U(1).

↪ The structure of 3-groups successfully provides a description of all fields present in
the Standard Model, interacting with gravity.

↪ Additionally, this structure naturally associates a new gauge group to the scalar and
fermionic fields present in the theory, thus generalizing the concept of gauge groups
in Yang-Mills theory.

↪ After determining the appropriate 3-groups and constructing the corresponding
3BF actions, it is necessary to impose appropriate constraints on the degrees of
freedom present in the topological sector of the 3BF action, in order to obtain the
desired classical dynamics of matter and gravity fields.
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3BF THEORY

↪ For the manifoldM4 and the 2-crossed module (L
δ→H

∂→ G,⊳ ,{_ , _}pf), or
equivalently for the 3-curvature (F ,G,H), the 3BF action is defined as:

S3BF = ∫
M4
⟨B ∧F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l .

↪ By adding constraints to the topological action, physically relevant models are
defined:
2BF actions with constraints for:

▸ Yang-Mills field,

▸ and Einstein-Cartan gravity,

and 3BF actions with constraints describing

▸ Klein-Gordon field,

▸ Dirac field,

▸ Weyl field,

▸ and Majorana field.

coupled to gravity in the standard manner.
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GRAVITY AND SU(N) YANG-MILLS FIELD

Gravity and SU(N) Yang-Mills Field TR and M. Vojinović, arXiv: 1904.07566.

↪ Crossed module (H ∂→ G,⊳):

▸G = SO(3, 1) × SU(N) , H = R4 ,

▸Mab ⊳ Pc = [Mab,Pc] , τI ⊳ Pa = 0 ,

▸∂(τI) = 0 .

↪ 2-connection (α,β): α = ωabMab +AIτI , β = βaPa .

↪ 2-curvature (F ,G): F = RabMab + F IτI , G = ∇βPa .

↪ Topological action: S2BF = ∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa .

↪ Constrained action:

S =∫
M4

Bab ∧Rab +BI ∧ FI + ea ∧∇βa − λab ∧ (Bab −
1

16πl2p
εabcdec ∧ ed)

+ λI ∧ (BI −
12
g
MabIe

a ∧ eb) + ζabI(MabIεcdef e
c ∧ ed ∧ ee ∧ ef − gIJFJ ∧ ea ∧ eb) .
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KLEIN-GORDON FIELD

Klein-Gordon field D = ϕI TR and M. Vojinović, arXiv: 1904.07566.

↪ 2-crossed module (L δ→H
∂→ G,⊳ ,{_ , _}) ∶

▸G = SO(3, 1) , H = R4 , L = R ,

▸Mab ⊳ Pc = [Mab,Pc] , Mab ⊳ TA = 0 ,

▸ ∂(Pa) = 0 , δ(TA) = 0 , {Pa ,Pb} = 0 .

↪ 3-connection (α ,β , γ): α = ωabMab , β = βaPa , γ = γI .

↪ 3-curvature (F ,G ,H): F = RabMab , G = ∇βaPa , H = dγ .

↪ Topological action: S3BF = ∫
M4

Bab ∧Rab + ea ∧∇βa + ϕdγ .

S = ∫
M4

Bab ∧Rab + ea ∧∇βa + ϕdγ − λab ∧ (Bab −
1

16πl2p
εabcdec ∧ ed)

+ λ ∧ (γ −
1
2
Habce

a ∧ eb ∧ ec) +Λab ∧ (Habcε
cdef ed ∧ ee ∧ ef − dϕ ∧ ea ∧ eb)

−
1

2 ⋅ 4!
m2ϕ2εabcde

a ∧ eb ∧ ec ∧ ed .
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CLASSICAL THEORY

↪ General relativity can be formulated as a 2BF theory with constraints for a specific
choice of a symmetry 2-group. A. Miković and M. Vojinović, arXiv: 1110.4694.
▸ The advantage of this formulation of General Relativity over the formulation via BF theory
lies in the fact that the structure of the 2-group introduces tetrad fields into the topological
action, allowing for matter coupling with gravity in a straightforward manner.

▸ However, matter fields cannot be naturally expressed within the algebraic structure of the
2-group, i.e., the matter sector in the action cannot be written as a sum of a topological term
and constraint term.

▸ Another step of higher categorical generalization of the BF theory is necessary — the
so-called 3BF theory.

↪ The Einstein-Yang-Mills theories have been formulated, i.e., the theory of gravity and
gauge fields as 2BF theory with constraints.

↪ Theories describing the Klein-Gordon and Dirac fields in curved space have been
formulated as 3BF action with constraints, as well as the Weyl and Majorana fields
interacting with Einstein-Cartan gravity.

↪ These results are then applied to construct 3BF actions with constraints describing
all matter present in the Standard Model coupled to the gravitational field.
▸ The advantage of this formulation lies in having the classical action of the complete theory
written in a form prepared for the spinfoam quantization procedure.

TR and M. Vojinović, arXiv: 1904.07566.
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GAUGE SYMMETRY IN 3BF THEORY



SYMMETRIES OF 3BF ACTION

G-gauge transformations J. F. Martins and R. Picken, 2011, W. Vang, 2014.

In the 3BF theory for a 2-crossed module (L δ→H
∂→G,⊳,{_ , _}pf ), the following transformation is a gauge symmetry:

α → α
′ = Adgα + gdg

−1
, B → B

′ = gBg
−1

,

β → β
′ = g ⊳ β , C → C

′ = g ⊳ C ,

γ → γ
′ = g ⊳ γ , D → D

′ = g ⊳D,

where g = exp(ϵg ⋅ Ĝ) = exp(ϵgαĜ
α) ∈G and ϵg ∶M4 → g is the transformation parameter.

H-gauge transformation J. F. Martins and R. Picken, 2011, W. Wang, 2014.

↪ In the 3BF theory for a 2-crossed module (L δ→H
∂→G,⊳,{_ , _}pf ), the following transformation is a symmetry:

α → α
′ = α − ∂ϵh , B → B

′ =B −C
′ ∧T ϵh − ϵh ∧

D
ϵh ∧

D
D,

β → β
′ = β −∇′ϵh − ϵh ∧ ϵh , C → C

′ = C −D ∧X1 ϵh −D ∧X2 ϵh ,

γ → γ
′ = γ + {β′, ϵh}pf + {ϵh,β}pf , D → D

′ =D,

where ϵh ∈A
1(M4,h) is an arbitrary 1-form element of the algebra h.

L-gauge transformations J. F. Martins and R. Picken, 2011., W. Wang, 2014.

↪ In the 3BF theory for a 2-crossed module (L δ→H
∂→G,⊳,{_ , _}pf ), the following transformation is a symmetry:

α → α
′ = α, B → B

′ =B +D ∧S ϵl ,

β → β
′ = β + δϵl , C → C

′ = C ,

γ → γ
′ = γ +∇ϵl , D → D

′ =D,

where ϵl ∈A
2(M4, l) is an arbitrary 2-form element of the algebra l. TR and M. Vojinović, arXiv: 2101.04049.
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SYMMETRIES OF 3BF ACTION

M-gauge transformations

↪ In the 3BF theory for a 2-crossed module (L δ→H
∂→ G,⊳,{_ , _}pf), the following

transformation is a symmetry

α → α′ = α , B → B′ = B −∇ϵm ,

β → β′ = β , Ca → C′a = Ca − ∂aαϵm
α ,

γ → γ′ = γ , D → D′ =D ,

where ϵm ∈ A1(M4, g) is an arbitrary 1-form element of the algebra g.

N-gauge transformations

↪ In the 3BF theory for a 2-crossed module (L δ→H
∂→ G,⊳,{_ , _}pf), the following

transformation is a symmetry

α → α′ = α , B → B′ = B − β ∧T ϵn ,

β → β′ = β , C → C′ = C −∇ϵn ,

γ → γ′ = γ , DA → D′A =DA + δAaϵn
a ,

where ϵn ∶M4 → h is an arbitrary function element of the algebra h.
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GROUP OF GAUGE SYMMETRIES

↪ We obtain that the Lie algebra g of the groupG of a 2-crossed module (L δ→H
∂→G,⊳ ,{_ , _}pf ) is:

[Ĝα, Ĝβ ] = fαβ
γ
Ĝγ .

↪ Algebra of the group H̃L (generators ofH- andL-gauge transformations):

[Ĥa
µ
, Ĥb

ν ] = 2X(ab)
A

L̂A
µν

, [L̂A
µν

, L̂B
ρσ] = 0 , [Ĥa

µ
, L̂A

νρ] = 0 .

↪ Groups M̃ and Ñ (generators ofM-gauge transformations andN-gauge transformations)

[M̂α
µ
,M̂β

ν ] = 0 , [N̂a, N̂b] = 0 , [M̂α
µ
, N̂a] = 0 .

↪ Action of generators of the group H̃L on generators ofM- andN-gauge transformations:

[Ĥa
µ
, N̂

b] = ⊳αa
b
M̂

αµ
, [Ĥa

µ
,M̂α

ν ] = 0 ,

[L̂A
νρ

, M̂α
µ] = 0 , [L̂A

µν
, N̂a] = 0 .

↪ Action of generators of groupG on generators ofH-,L-,M- andN-gauge transformations:

[Ĝα, Ĥa
µ] = ⊳ αa

b
Ĥb

µ
, [Ĝα, L̂A

µν ] = ⊳αA
B

L̂B
µν

,

[Ĝα , M̂β
µ] = fαβ

γ
M̂γ

µ
, [Ĝα, N̂a] = ⊳αa

b
N̂b .
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GROUP OF GAUGE SYMMETRIES

↪ Summarizing the previous results, we find that the gauge symmetry group G3BF has
the structure:

G3BF = G̃ ⋉ (H̃L ⋉ (Ñ × M̃)) .

TR and M. Vojinović, arXiv: 2101.04049.
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DIFFEOMORPHISM SYMMETRY Diff(M4,R)

↪ Any action depending on at least two fields ϕ1(x) and ϕ2(x) is invariant under the
following transformation, determined by the HT parameter ϵHT :

δ0
HTϕ1 = ϵHT(x)

δS

δϕ2
, δ0

HTϕ2 = −ϵHT(x)
δS

δϕ1
,

which can be easily verified by calculating the variation of the action:

δHTS[ϕ1, ϕ2] =
δS

δϕ1
δ0

HTϕ1 +
δS

δϕ2
δ0

HTϕ2 = 0 .

↪ If diffeomorphisms are symmetries of the action, then for every field ϕ(x) in the
theory, and every parameter of diffeomorphisms ξµ(x), there exists a choice of
parameters ϵi(x) and ϵHT(x), such that:

(δ0gauge + δ0HT + δ0diff)ϕ = 0 .

If diffeomorphisms are symmetries of the theory, their variation of the form can be
expressed in terms of variations of the form corresponding to gauge and HT
transformations:

δ0
diff ϕ = −δ0gaugeϕ − δ0HTϕ .

”Quantization of gauge systems”, Eno and Teitelboim, 1994.
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DIFFEOMORPHISM SYMMETRY Diff(M4,R)

↪ HT variations of forms are defined as:
δ0

HTαα
µ =

1
2
ϵHTαβ

µνρ
δS

δBβ
νρ
, δ0

HTBα
µν = −ϵHTαβ

ρµν
δS

δαβ
ρ
,

δ0
HTβa

µν = ϵHTab
µνρ

δS

δCb
ρ
, δ0

HTCa
µ = −

1
2
ϵHTab

νρµ
δS

δβb
νρ
,

δ0
HTγAµνρ = ϵHTAB

µνρ
δS

δDB
, δ0

HTDA = −
1
3!
ϵHTAB

µνρ
δS

δγBµνρ
,

↪ The parameters of HT transformations are ϵHTαβ
µνρ , ϵ

HTab
µνρ , and ϵHTAB

µνρ .
↪ The parameters of gauge transformations are ϵgα , ϵhaµ , ϵlAµν , ϵmα

µ , and ϵna .

There is a choice that gives diffeomorphisms!

ϵg
α = −ξλαα

λ , ϵh
a
µ = ξλβa

µλ , ϵl
A

µν = ξλγAµνλ , ϵm
α
µ = ξλBα

µλ , ϵn
a = −ξλCa

λ ,

ϵHTαβ
µνρ = ξλgαβϵµνρλ , ϵHTab

µνρ = ξλgabϵλµνρ , ϵHTAB
µνρ = ξλgABϵµνρλ ,

↪ Hence, 3BF theory is invariant under diffeomorphism transformations.

↪ Diffeomorphisms are a subgroup of the semidirect product of the total gauge
symmetry group G3BF and the HT transformation group GHT .

Diff(M4) ⊄ G3BF , but Diff(M4) ⊂ Gtotal = G3BF ⋉ GHT .

TR and M. Vojinović, arXiv: 2101.04049.
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GROUP OF GAUGE SYMMETRIES OF 3BF ACTION

↪ After the Hamiltonian analysis of the theory, computing the generators using the
Castellani procedure, and calculating their commutators, it was found that the 3BF
theory is invariant under five types of gauge transformations — G-gauge, H-gauge,
L-gauge,M-gauge, and N-gauge transformations.

↪ We analyzed the structure of the complete gauge symmetry group G3BF – a
connection between the gauge symmetry group of the 3BF action and the
structure of the 3-group on which the 3BF action is based was obtained.

↪ As expected, it is established that the 3BF theory has diffeomorphism symmetry.
TR and M. Vojinović, arXiv: 2101.04049.

↪ The explicit symmetry breaking of the gauge group of the topological 3BF sector,
due to the presence of the constraints, has been studied. Each constraint was
studied separately, and it is analyzed which gauge sector is being broken by which
constraint. P. Stipsić and M. Vojinović, arXiv: 2402.17675.

↪ In addition, the spontaneous symmetry breaking and the Higgs mechanism for the
3BF formulation of the electroweak model has been studied. While the Higgs
mechanism is conceptually the same as in the ordinary electroweak theory, the
structure and details of the 3BF formulation are very different from the standard
textbook approach, so much that the complete procedure of spontaneous symmetry
breaking had to be done anew. P. Stipsić and M. Vojinović, arXiv: 2402.17675.
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CONSTRUCTION OF 3BF STATE SUM



QUANTIZATION OF TOPOLOGICAL 3BF THEORY

Construction of the topological 3BF state sum based on the S3BF action using the
standard spinfoam quantization procedure.

Z = ∫ DαDβDγDBDCDD exp(i∫
M4
⟨B ∧F⟩g + ⟨C ∧ G⟩h + ⟨D ∧H⟩l) .

↪ By formally integrating over the Lagrange multipliers B, C , and D, we obtain:

Z = N ∫ DαDβDγ δ(F)δ(G)δ(H) .

↪ Discretization of the 3-connection:
▸ α ∈A1(M4,g)↦ gϵ ∈ G colors the edges ϵ = (jk) ∈ Λ1 ,

▸ β ∈A2(M4 ,h)↦ h∆ ∈H colors the triangles∆ = (jkℓ) ∈ Λ2 ,

▸ γ ∈A3(M4 , l)↦ lτ ∈ L colors the tetrahedra τ = (jkℓm) ∈ Λ3 .

∫ Dα ↦ ∏
(jk)∈Λ1

∫
G

dgjk

∫ Dβ ↦ ∏
(jkℓ)∈Λ2

∫
H

dhjkℓ

∫ Dγ ↦ ∏
(jkℓm)∈Λ3

∫
L

dljkℓm

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Ð↠ Discretization of the integral measure.
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QUANTIZATION OF TOPOLOGICAL 3BF THEORY

↪ The condition δ(F) is discretized as

δ(F) = ∏
(jkℓ)∈Λ2

δG(gjkℓ) , δG(gjkℓ) = δG(∂(hjkℓ)gkℓ gjk g
−1
jℓ) .

↪ The condition δ(G) is discretized as

δ(G) = ∏
(jkℓm)∈Λ3

δH(hjkℓm) ,

δH(hjkℓm) = δH(δ(ljkℓm)hjℓm (gℓm ⊳ hjkℓ)h
−1
kℓm h

−1
jkm) .

↪ The condition δ(H) is discretized as

δ(H) = ∏
(jkℓmn)∈Λ4

δL(ljkℓmn) ,

δL(ljkℓmn) = δL(l
−1
jℓmn hjℓn ⊳

′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l
−1
jkℓn(hjkn ⊳

′
lkℓmn)ljkmnhjmn ⊳

′ (gmn ⊳ ljkℓm)) .

...we obtain Ô⇒

Z = N ∏
(jk)∈Λ1

∫
G

dgjk ∏
(jkℓ)∈Λ2

∫
H

dhjkℓ ∏
(jkℓm)∈Λ3

∫
L

dljkℓm( ∏
(jkℓ)∈Λ2

δG(gjkℓ))( ∏
(jkℓm)∈Λ3

δH(hjkℓm))( ∏
(jkℓmn)∈Λ4

δL(ljkℓmn)).

This expression becomes independent of the manifold triangulation by appropriate choice of the factorN .

30 / 35



QUANTIZATION OF TOPOLOGICAL 3BF THEORY

LetMd be a compact oriented combinatorial d-manifold, d = 4, and let
(L δ→H

∂→ G,⊳ ,{_ , _}pf) be a 2-crossed module. The state sum of the topological
3-gauge theory is defined by the following expression:

Z = ∣G∣−∣Λ0 ∣+∣Λ1 ∣−∣Λ2 ∣∣H ∣∣Λ0 ∣−∣Λ1 ∣+∣Λ2 ∣−∣Λ3 ∣ ∣L∣−∣Λ0 ∣+∣Λ1 ∣−∣Λ2 ∣+∣Λ3 ∣−∣Λ4 ∣

×( ∏
(jk)∈Λ1

∫
G

dgjk)( ∏
(jkℓ)∈Λ2

∫
H

dhjkℓ)( ∏
(jkℓm)∈Λ3

∫
L

dljkℓm)

×( ∏
(jkℓ)∈Λ2

δG(∂(hjkℓ) gkℓ gjk g−1jℓ))( ∏
(jkℓm)∈Λ3

δH(δ(ljkℓm)hjℓm (gℓm ⊳ hjkℓ)h−1kℓm h−1jkm))

×( ∏
(jkℓmn)∈Λ4

δL(l−1jℓmn hjℓn ⊳
′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l−1jkℓn(hjkn ⊳

′ lkℓmn)ljkmnhjmn ⊳′ (gmn ⊳ ljkℓm))) .

Where ∣Λ0∣ denotes the number of vertices, ∣Λ1∣ the number of edges, ∣Λ2∣ triangles,
∣Λ3∣ tetrahedra, and ∣Λ4∣ the number of 4-simplices in the triangulation.

↪ TR and M. Vojinović, arXiv: 2201.02572.

↪ Behavior under Pachner moves has been analyzed.
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PACHNER MOVES

↪ We analyzed the behavior of the constructed state sum under Pachner moves.
Pachner moves are local changes to triangulations that preserve topology, so any two
triangulations of the same manifold are connected by a finite number of Pachner moves.

↪ In the 3D case, there are four Pachner moves — moves 1↔ 4 and 2↔ 3 and their inverses,
while in 4D there are five distinct Pachner moves — moves 3↔ 3, 4↔ 2, and 5↔ 1 and their
inverses.

Pachner moves in 4D

(3)

(2)

(6)

(5)

(4)

1↔ 5

(3)

(2)

(6)

(5)

(4)● (1)

(3)(2)

(1)

(4) (5)

(6)

2↔ 4

(3)(2)

(1)

(4) (5)

(6)

(2)(4)

(1)

(6) (3)

(5)

3↔ 3

(2)(4)

(1)

(6) (3)

(5)
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QUANTIZATION

2BF topological state sum

↪ We construct the 2BF action for a general strict 2-group and any triangulation of
any smooth d-dimensional spacetime manifold, d ∈ {3, 4}.
↪ For d = 3, the constructed state sum is precisely the Jetter’s model.
↪ For d = 4, it coincides with Porter’s TQFT for d = 4 and n = 2.

↪ 2BF state sum is a topological invariant of the manifold.
↪ Girelli, Pfeiffer, Popescu, arXiv: 0708.3051. Miković, Martins, arXiv: 1006.0903.

↪ Representation theory for 2-groups (including the Poincare 2-group), has been
developed in great detail. Baez, Baratin, Freidel, Wise arXiv: 0812.4969.

↪ The topological invariant and TQFT for the Euclidean 2-group (G = SO(4),H = R4)
has also been studied in detail. Asante, Dittrich, Girelli, Riello, Tsimiklis arXiv: 1908.05970.

2BF state sum

↪ For Poincare 2-group and 2BF action for GR, one possible quantization prescription
leads to the spincube model. A. Miković and M. Vojinović, arXiv: 1110.4694.

3BF topological state sum

↪ We formulate the 3BF state sum for the classical 3BF action in the case of a
general semi-strict 3-group and 4-dimensional spacetime manifold.
↪ It matches Porter’s abstract definition of TQFT for d = 4 and n = 3.

↪ We find that it is a topological invariant of the manifold.TR and M. Vojinović, arXiv: 2201.02572. 33 / 35



SECOND AND THIRD STEP OF THE QUANTIZATION PROCEDURE

↪ The state sum for the 3BF topological theory is obtained.
↪ However, to complete the second step of the covariant spinfoam quantization

procedure, it is necessary to have generalizations of the Peter-Weyl and Plancherel
theorems for the cases of 2-groups and 3-groups, mathematical results that are
currently open problems.

↪ These theorems should provide a decomposition of functions on a 3-group into a
sum over the corresponding irreducible representations of the 3-group.

↪ This determines the spectrum of labels of the simplices of the triangulation, i.e.,
the range of values of fields living on the simplices of the triangulation, as was done
in the case of the BF state sum.

↪ Current attempts of the second step of quantization of generalized BF theories in
the framework of higher gauge theories boil down to guessing irreducible
representations of 2-groups.

↪ This result opens a way to the third and final step of the covariant quantization
procedure and the formulation of the quantum theory of gravity and matter of the
Standard Model by imposing appropriate constraints on the variables through
modification of the amplitudes of the state sum.
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CONCLUSION

↪ First step of the covariant spinfoam quantization procedure. Classical theory. —
Successfully formulated constrained 3BF actions describing gravitational and
Yang-Mills, scalar, and Dirac fields.

↪ Gauge group of symmetries of the topological 3BF action. — Complete
Hamiltonian analysis of the 3BF action was performed, and the generator of gauge
transformations was found. It was obtained that the 3BF theory is invariant under
five types of gauge transformations: G-gauge, H-gauge, L-gauge,M-gauge, and
N-gauge transformations.

↪ Second step of the covariant spinfoam quantization procedure. — Constructed the
3BF state sum and proved its invariance under Pachner moves, i.e., that it is a
topological invariant of the manifold.

↪ Third step of the covariant spinfoam quantization procedure. — Work in progress!
↪ Nontrivial choices of the 3-group structure may provide new avenues for research

on unification of all fields.
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DIRAC FIELD

Dirac Field D = ψαPα + ψ̄αP
α

↪ 2-crossed module (L δ→H
∂→ G,⊳ ,{_ , _}) ∶

▸G = SO(3, 1) , H = R4 , L = R8(Grassmannians) ,

▸Mab ⊳ Pc = [Mab,Pc] , Mab ⊳ Pα =
1
2
(σab)

β
αPβ , Mab ⊳ P

α = −
1
2
(σab)

α
βP

β
,

▸ ∂(Pa) = 0 , δ(TA) = 0 , {Pa ,Pb} = 0 .

↪ 3-connection (α ,β , γ): α = ωabMab , β = βaPa , γ = γαPα + γ̄αPα .

↪ 3-curvature (F ,G ,H):

F = RabMab , G = ∇βaPa ,

H = (dγα +
1
2
ωab(σab)αβγ

β)Pα+(dγ̄α −
1
2
ωabγ̄β(σab)βα)Pα

≡ (
→
∇γ)αPα + (γ̄

←
∇)αPα .

↪ Topological action:

S3BF = ∫
M4

Bab ∧Rab + ea ∧∇βa + (γ̄
←
∇)αψα + ψ̄α(

→
∇γ)α .
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3-GAUGE THEORY ON TRIANGULATION

↪ Classical equations of motion impose the condition that the gauge connection is
flat – that every null-homotopic curve corresponds to the identity of the gauge group.
↪ Within higher gauge theories, this condition is generalized by requiring that the
surface holonomy of the boundary 2-sphere of every 3-ball be trivial.

↪ In the context of 3-gauge theory, the first condition remains unchanged, the second
condition is generalized, while it is necessary to add the condition of flatness of the
boundary volume of the 4-simplex.

Lemma 1 Zireli, Pfajfer, and Popesku arXiv: 0708.3051.

Consider the triangle (jkℓ). The edges (jk) are labeled by group elements gjk ∈ G
and the triangles (jkℓ) by elements hjkℓ ∈H .

l● k●

gkl

yy
●j

gjk
xx

gjl

]]
hjkl
� ��
�
��
�

= l● l●

1●
uu

∂(hjkl)

ii hjkl�� k●

gkl

yy
●j

gjk
xx

gklgjk

ZZ
1gklgjk

�� �
��
�
��
��

= l● k●

gkl

yy
●j

gjk
xx

∂(hjkl)gklgjk

]]
hjkl
� �
����
�

.

The curvature γ1 = gkℓgjk is the source, and the curvature γ2 = gjℓ is the target of the
surface 2-morphism Σ ∶ γ1 → γ2 , labeled by the group element hjkℓ ,

gjℓ = ∂(hjkℓ)gkℓgjk .
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3-GAUGE THEORY ON TRIANGULATION

Lemma 2 TR and M. Vojinović, arXiv: 2201.02572.

Consider the tetrahedron (jkℓm). The tetrahedra (jkℓm) are labeled by group
elements ljkℓm ∈ L.

m● ●ℓ
gℓmoo ●k

gkℓ

xx
●j

gjk
xx

gjℓ

]]
hjkℓ
� ��
�
��
�

gjm

\\

hjℓm� ���
�

= (gℓmgjℓ, hjℓm)#2(gℓm#1(gkℓgjk, hjkℓ)) = (gℓmgkℓgjk, hjℓm(gℓm ⊳ hjkℓ)) .

m● ●ℓ

gℓm
xx

●k

gkℓ

x x

gkm

]]
hkℓm
� �
���

●j
gjkoo

gjm

\\
hjkm

��
--
-
--
-

= (gkmgjk, hjkm)#2((gℓmgkℓ, hkℓm)#1gjk) = (gℓmgkℓgjk, hjkmhkℓm) .

The mapping of the surface Σ1 ∶ gℓmgkℓgjk → gjm to the surface
Σ2 ∶ gℓmgkℓgjk → gjm is determined by the element ljkℓm :

hjkmhkℓm = δ(ljkℓm)hjℓm(gℓm ⊳ hjkℓ) .
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3-GAUGE THEORY

Lemma 3 TR and M. Vojinović, arXiv: 2201.02572.

We consider a 4-simplex, (jkℓmn). We cut the 4-simplex volume along the surface
hjmngmn ⊳ (hjℓmgℓm ⊳ hjkℓ).

This brings us back to the initial surface!

The obtained 3-morphism is the identity 3-morphism with source and target
Σ1 = Σ2 = hjmngmn ⊳ (hjℓmgℓm ⊳ hjkℓ),

l
−1
jℓmn hjℓn ⊳

′ {hℓmn, (gmngℓm) ⊳ hjkℓ}p l
−1
jkℓn(hjkn ⊳

′
lkℓmn)ljkmnhjmn ⊳

′ (gmn ⊳ ljkℓm) = e .
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