The BV Formulation of Fuzzy Field Theories

Richard Szabo

Homotopy Algebras and Quantum Field Theory

- Higher structures in algebra and geometry have been playing a prominent role in many recent developments in physics
- In particular, homotopical methods based on L_{∞}-algebras and A_{∞}-algebras have increased our understanding of algebraic and kinematic structures of correlation functions of quantum field theory
- Quantum Batalin-Vilkovisky (BV) formalism gives explicit homological constructions in purely algebraic fashion without resorting to canonical quantization or path integral techniques
- In this talk: Apply modern incarnation of BV quantization (à la Costello-Gwilliam) to fuzzy field theories, which can be quantized in a completely rigorous way avoiding functional analytic complications of continuum field theories
- they are also interesting examples of noncommutative field theories

Outline

- Quantum BV Field Theory and L_{∞}-Algebras
- Homological Perturbation Theory
- Scalar Field Theory on the Fuzzy Sphere
- Outlook
with Hans Nguyen and Alexander Schenkel [arXiv: 2107.02532]

Free BV Field Theory $\left(E, Q_{0},\langle-,-\rangle\right)$

- Graded vector space
$E=\cdots \oplus E^{-1} \oplus E^{0} \oplus E^{1} \oplus \cdots=$ ghosts \oplus fields \oplus antifields
$Q_{0}: E \longrightarrow E$ differential of degree $1\left(Q_{0}^{2}=0\right)$
$\langle-,-\rangle: E \otimes E \longrightarrow \mathbb{C}$ non-degenerate graded antisymmetric of degree -1 and Q_{0}-invariant (-1 -shifted symplectic structure)
- Describes derived space of free fields
- Polynomial observables $\left(\operatorname{Sym} E^{*} \simeq \operatorname{Sym} E[1], Q_{0},\{-,-\}\right)$:

BV antibracket $\{\varphi, \psi\}=\langle\varphi, \psi\rangle \mathbb{1}$ for $\varphi, \psi \in E[1]$ defines a P_{0}-algebra:

$$
\begin{aligned}
-Q_{0}\{\varphi, \psi\} & =\left\{Q_{0} \varphi, \psi\right\}+(-1)^{|\varphi|}\left\{\varphi, Q_{0} \psi\right\} & & \text { compatibility } \\
\{\varphi, \psi\} & =(-1)^{|\varphi||\psi|}\{\psi, \varphi\} & & \text { symmetric } \\
\{\varphi,\{\psi, \chi\}\} & = \pm\{\psi,\{\chi, \varphi\}\} \pm\{\chi,\{\varphi, \psi\}\} & & \text { Jacobi identity } \\
\{\varphi, \psi \chi\} & =\{\varphi, \psi\} \chi \pm \psi\{\varphi, \chi\} & & \text { Leibniz rule }
\end{aligned}
$$

L_{∞}-Algebras

- Extend cochain complex $\left(E[-1], Q_{0}\right)$ by antisymmetric maps $\left\{\ell_{n}: E[-1]^{\otimes n} \longrightarrow E[-1]\right\}_{n \geq 2}$ to form an L_{∞}-algebra:

$$
\begin{array}{rlr}
Q_{0} \ell_{2}(v, w) & =\ell_{2}\left(Q_{0} v, w\right) \pm \ell_{2}\left(v, Q_{0} w\right) \quad \text { Leibniz rule } \\
\ell_{2}\left(v, \ell_{2}(w, u)\right)+\text { cyclic } & =\left(Q_{0} \circ \ell_{3} \pm \ell_{3} \circ Q_{0}\right)(v, w, u) \quad \text { Jacobi up to homotopy }
\end{array}
$$ plus "higher homotopy Jacobi identities"

- Cyclic with respect to pairing $\langle-,-\rangle: E[-1] \otimes E[-1] \longrightarrow \mathbb{C}$:

$$
\left\langle v_{0}, \ell_{n}\left(v_{1}, v_{2}, \ldots, v_{n}\right)\right\rangle= \pm\left\langle v_{n}, \ell_{n}\left(v_{0}, v_{1}, \ldots, v_{n-1}\right)\right\rangle
$$

- (Cyclic) L_{∞}-algebras are homotopy coherent generalizations of (quadratic) Lie algebras
- Extended L_{∞}-algebra on $(\operatorname{Sym} E[1]) \otimes E[-1]$:

$$
\begin{aligned}
\ell_{n}^{\mathrm{ext}}\left(a_{1} \otimes v_{1}, \ldots, a_{n} \otimes v_{n}\right) & = \pm a_{1} \cdots a_{n} \otimes \ell_{n}\left(v_{1}, \ldots, v_{n}\right) \\
\left\langle a_{1} \otimes v_{1}, a_{2} \otimes v_{2}\right\rangle_{\mathrm{ext}} & = \pm a_{1} a_{2}\left\langle v_{1}, v_{2}\right\rangle
\end{aligned}
$$

Interacting BV Field Theory

- Interactions $I \in(\operatorname{Sym} E[1])^{0}$ incorporated by choosing dual bases $\varepsilon_{\alpha} \in E[-1], \varrho^{\alpha} \in E[-1]^{*} \simeq E[2]$ and 'contracted coordinate functions' $a=\varrho^{\alpha} \otimes \varepsilon_{\alpha} \in((\operatorname{Sym} E[1]) \otimes E[-1])^{1}$
- Homotopy Maurer-Cartan Action:

$$
\begin{aligned}
& \lambda I=\sum_{n \geq 2} \frac{\lambda^{n-1}}{(n+1)!}\left\langle\mathrm{a}, \ell_{n}^{\mathrm{ext}}(\mathrm{a}, \ldots, \mathrm{a})\right\rangle_{\mathrm{ext}} \in(\operatorname{Sym} E[1])^{0} \\
& S_{\mathrm{BV}}=\left\langle\mathrm{a}, Q_{0}(\mathrm{a})\right\rangle_{\mathrm{ext}}+\lambda I=\mathrm{BV} \text { action }
\end{aligned}
$$

- (Classical) Master Equation: $Q_{0}(\lambda /)+\frac{1}{2}\{\lambda I, \lambda /\}=0$
- $Q_{\text {int }}^{2}=0$ where $Q_{\text {int }}=Q_{0}+\{\lambda I,-\}$
- Defines P_{0}-algebra (Sym $E[1], Q_{\text {int }},\{-,-\}$) of observables for interacting BV field theory

Quantum BV Field Theory

- BV Laplacian $\Delta_{\mathrm{BV}}:$ Sym $E[1] \longrightarrow($ Sym $E[1])[1]$:

$$
\begin{aligned}
\Delta_{\mathrm{BV}}(\mathbb{1}) & =0=\Delta_{\mathrm{BV}}(\varphi) \quad, \quad \Delta_{\mathrm{BV}}(\varphi \psi)=\{\varphi, \psi\} \\
\Delta_{\mathrm{BV}}(a b) & =\Delta_{\mathrm{BV}}(a) b+(-1)^{|a|} a \Delta_{\mathrm{BV}}(b)+\{a, b\}
\end{aligned}
$$

$\Delta_{\mathrm{BV}}\left(\varphi_{1} \cdots \varphi_{n}\right)=\sum_{i<j} \pm\left\{\varphi_{i}, \varphi_{j}\right\} \varphi_{1} \cdots \varphi_{i-1} \widehat{\varphi}_{i} \varphi_{i+1} \cdots \varphi_{j-1} \widehat{\varphi}_{j} \varphi_{j+1} \cdots \varphi_{n}$
Implements Gaussian integration/Wick's Theorem

- Satisfies $Q_{0} \Delta_{\mathrm{BV}}+\Delta_{\mathrm{BV}} Q_{0}=0, \Delta_{\mathrm{BV}}^{2}=0, \Delta_{\mathrm{BV}}(\lambda I)=0$
- $Q_{\mathrm{BV}}^{2}=0$ where $Q_{\mathrm{BV}}=Q_{\mathrm{int}}+\hbar \Delta_{\mathrm{BV}}=Q_{0}+\{\lambda I,-\}+\hbar \Delta_{\mathrm{BV}}$
- Quantum observables (Sym $E[1], Q_{\mathrm{BV}}$) (E_{0}-algebra) for interacting BV field theory

Homological Perturbation Theory

- Propagators determine strong deformation retracts of $E^{*} \simeq E[1]$:

$$
\left(H^{\bullet}(E[1]), 0\right) \longleftarrow \iota \longrightarrow\left(\begin{array}{c}
\left.\gamma^{\gamma}\right) \\
\left.\longleftarrow \pi[1], Q_{0}\right)
\end{array} \begin{array}{c}
\pi \iota=\mathbb{1}, \iota \pi-\mathbb{1}=Q_{0} \gamma+\gamma Q_{0} \\
\gamma^{2}=0, \gamma \iota=0, \pi \gamma=0
\end{array}\right.
$$

- Observables: $\left(\operatorname{Sym} H^{\bullet}(E[1]), 0\right) \longleftarrow \mathcal{\longleftarrow} \longrightarrow$ (Sym $\left.E[1], Q_{0}\right)$
- Maps \mathcal{I} and Π extend ι and π as commutative dg-algebra morphisms:

$$
\mathcal{I}\left(\left[\psi_{1}\right] \cdots\left[\psi_{n}\right]\right)=\iota\left[\psi_{1}\right] \cdots \iota\left[\psi_{n}\right] \quad, \quad \Pi\left(\varphi_{1} \cdots \varphi_{n}\right)=\pi\left(\varphi_{1}\right) \cdots \pi\left(\varphi_{n}\right)
$$

- $(\iota \pi)^{2}=\iota \pi: E[1] \longrightarrow H^{\bullet}(E[1])$ splits $E[1]=E[1]^{\perp} \oplus H^{\bullet}(E[1]):$

$$
\operatorname{Sym} E[1]=\operatorname{Sym} E[1]^{\perp} \otimes \operatorname{Sym} H^{\bullet}(E[1])
$$

- Put $\Gamma\left(\varphi_{1}^{\perp} \cdots \varphi_{n}^{\perp} \otimes[\psi]\right)=\frac{1}{n} \sum_{i=1}^{n} \pm \varphi_{1}^{\perp} \cdots \varphi_{i-1}^{\perp} \gamma\left(\varphi_{i}^{\perp}\right) \varphi_{i+1}^{\perp} \cdots \varphi_{n}^{\perp} \otimes[\psi]$

Homological Perturbation Theory

- Homological Perturbation Lemma: With $\delta=\{\lambda I,-\}+\hbar \Delta_{\mathrm{BV}}$, there is a strong deformation retract

$$
\left(\operatorname{Sym} H^{\bullet}(E[1]), \widetilde{\delta}\right) \longrightarrow \tilde{I} \longrightarrow\left(\begin{array}{c}
\gamma^{\tilde{r}} \\
\longleftarrow
\end{array}\left(\operatorname{Sym} E[1], Q_{\mathrm{BV}}\right)\right.
$$

where $\tilde{\Pi}=\Pi(\mathbb{1}-\delta \Gamma)^{-1} \delta \Gamma=\Pi \circ \sum_{k=1}^{\infty}(\delta \Gamma)^{k}$

- $\left\langle\varphi_{1} \cdots \varphi_{n}\right\rangle:=\widetilde{\Pi}\left(\varphi_{1} \cdots \varphi_{n}\right) \in \operatorname{Sym} H^{\bullet}(E[1])$ are n-point correlation functions on space of vacua $H^{\bullet}(E)$ of the field theory
- Evaluated in a particular vacuum this gives the usual numerical correlations of perturbative quantum field theory around this vacuum

Scalar Field Theory on the Fuzzy Sphere

- Fuzzy sphere: Take the spin $\alpha=\frac{N-1}{2}$ irrep of $s u(2)$, with generators

$$
\begin{gathered}
{\left[X_{i}, X_{j}\right]=\operatorname{ir} r_{N} \epsilon_{i j k} X_{k}, X_{i} X_{i}=\mathbb{1}, X_{i}^{*}=X_{i}} \\
A=(\alpha) \otimes(\alpha)^{*} \simeq \operatorname{Mat}(N)
\end{gathered}
$$

- Free BV field theory: $E=E^{0} \oplus E^{1}$ with $E^{0}=E^{1}=A$

$$
\begin{gathered}
Q_{0}=\Delta+m^{2} \quad, \quad \Delta(a)=\frac{1}{r_{N}^{2}}\left[X_{i},\left[X_{i}, a\right]\right] \quad \text { (fuzzy Laplacian) } \\
\langle\varphi, \psi\rangle=(-1)^{|\varphi| \frac{4 \pi}{N}} \operatorname{Tr}(\varphi \psi)
\end{gathered}
$$

- Fuzzy spherical harmonics: $Y_{j}^{J} \in A(0 \leq J \leq N,-J \leq j \leq J)$ satisfy

$$
\begin{gathered}
\Delta\left(Y_{j}^{J}\right)=J(J+1) Y_{j}^{J} \quad, \quad \frac{4 \pi}{N} \operatorname{Tr}\left(Y_{j}^{J *} Y_{j^{\prime}}^{J^{\prime}}\right)=\delta_{J J^{\prime}} \delta_{j j^{\prime}} \\
Y_{i}^{\prime} Y_{j}^{J}=\sum_{K, k} \pm \sqrt{(2 I+1)(2 J+1)(2 K+1)}\left(\begin{array}{ccc}
I & J & K \\
i & j & -k
\end{array}\right)\left\{\begin{array}{ccc}
\prime & J & K \\
\alpha & \alpha & \alpha
\end{array}\right\} Y_{k}^{K}
\end{gathered}
$$

Scalar Field Theory on the Fuzzy Sphere

- L_{∞}-algebra: For any $n \geq 2$, choose $\ell_{n}: E[-1]^{\otimes n} \longrightarrow E[-1]$ as

$$
\ell_{n}\left(\varphi_{1}, \ldots, \varphi_{n}\right)=\frac{1}{n!} \sum_{\sigma \in S_{n}} \varphi_{\sigma(1)} \cdots \varphi_{\sigma(n)}
$$

- Contracted coordinate functions:

$$
a=\sum_{J, j} Y_{j}^{J *} \otimes Y_{j}^{J} \in((\operatorname{Sym} E[1]) \otimes E[-1])^{1}
$$

- Interactions: $\lambda I=\frac{\lambda^{n-1}}{(n+1)!} \sum_{\left\{J_{i}, j_{i}\right\}} I_{j_{0} \cdots j_{n}}^{J_{0} \cdots J_{n}} Y_{j_{0}}^{J_{0} *} \ldots Y_{j_{n}}^{J_{n} *} \in(\operatorname{Sym} E[1])^{0}$

$$
I_{j_{0} \cdots j_{n}}^{J_{0} \ldots j_{n}}=\left\langle Y_{j_{0}}^{J_{0}}, \ell_{n}\left(Y_{j_{1}}^{J_{1}}, \ldots, Y_{j_{n}}^{J_{n}}\right)\right\rangle \in \mathbb{C}
$$

expressed in terms of Wigner $3 j$ and $6 j$ symbols of $s u(2)$

$$
\text { E.g. } \quad \begin{aligned}
J_{j_{0} \cdots j_{3}}^{J_{3}}= & \prod_{i=0}^{3} \sqrt{2 J_{i}+1} \sum_{J, j}(-1)^{j}(2 J+1) \\
& \times\left(\begin{array}{lll}
J_{0} & J_{1} & J \\
j_{0} & j_{1} & j
\end{array}\right)\left(\begin{array}{lll}
J_{2} & J_{3} & J \\
j_{2} & j_{3} & -j
\end{array}\right)\left\{\begin{array}{lll}
J_{0} & J_{1} & J \\
\alpha & \alpha & \alpha
\end{array}\right\}\left\{\begin{array}{lll}
J_{2} & J_{3} & J \\
\alpha & \alpha & \alpha
\end{array}\right\}
\end{aligned}
$$

Massive Scalar Field Theory on the Fuzzy Sphere

- Deformation retract: $H^{\bullet}(E[1])=0$ for $m^{2}>0$:

- Correlation functions: $(\operatorname{Sym} 0=\mathbb{C}, 0) \longleftarrow \tilde{\mathcal{I}} \longleftarrow\left(\operatorname{Sym} E[1], Q_{\mathrm{BV}}\right)$

Only $\Pi(\mathbb{1})=1$ is non-zero (because $\pi=0$)

- Example: 2-point function at 1-loop in Φ^{4}-theory $(n=3)$:

$$
\begin{aligned}
& \left\langle\varphi_{1} \varphi_{2}\right\rangle=\Pi\left(\delta \Gamma\left(\varphi_{1} \varphi_{2}\right)+(\delta \Gamma)^{2}\left(\varphi_{1} \varphi_{2}\right)+(\delta \Gamma)^{3}\left(\varphi_{1} \varphi_{2}\right)\right) \\
& =-\hbar\left\langle\varphi_{1}, G\left(\varphi_{2}\right)\right\rangle \\
& \quad-\frac{\lambda^{2} \hbar^{2}}{2} \sum_{\left\{J_{i}, j_{i}\right\}} \frac{l_{j_{1} i j j_{2}}^{J_{1} J J J_{2}}}{J(J+1)+m^{2}}\left\langle Y_{j_{1}}^{J_{1} *}, G\left(\varphi_{1}\right)\right\rangle\left\langle Y_{j_{2}}^{J_{2} *}, G\left(\varphi_{2}\right)\right\rangle+O\left(\lambda^{4}\right)
\end{aligned}
$$

Agrees with planar and non-planar loop corrections in conventional perturbation theory

Massless Scalar Field Theory on the Fuzzy Sphere

- Deformation retract: $H^{\bullet}(E[1])=\mathbb{C}[1] \oplus \mathbb{C}$ for $m^{2}=0$:

$$
(\mathbb{C}[1] \oplus \mathbb{C}, 0)=\eta \longrightarrow \begin{gathered}
\left.-\zeta^{-G_{0}}\right) \\
\leftarrow \\
\hline
\end{gathered}\left(E[1], Q_{0}\right) \quad G_{0}=G^{\perp}\left(\mathrm{id}_{A}-\eta \frac{1}{N} \operatorname{Tr}\right)
$$

$A=A^{\perp} \oplus \operatorname{ker}(\Delta)$ with projector $\eta \frac{1}{N} \operatorname{Tr}: A \longrightarrow \operatorname{ker}(\Delta)=\mathbb{C} \mathbb{1}_{N}$ where $\eta: \mathbb{C} \longrightarrow A$ is the unit map

By the Rank-Nullity Theorem of Linear Algebra, Δ restricts to an invertible map $\Delta^{\perp}: A^{\perp} \longrightarrow A^{\perp}$; extend $G^{\perp}=\left(\Delta^{\perp}\right)^{-1}$ by 0 to all of A

- Correlation functions: $\Pi(\mathbb{1})=1, \Pi\left(\varphi_{1} \cdots \varphi_{n}\right)=\frac{1}{N} \operatorname{Tr}\left(\varphi_{1}\right) \cdots \frac{1}{N} \operatorname{Tr}\left(\varphi_{n}\right)$ in Sym $\mathbb{C}=\mathbb{C}$, where
$\frac{1}{N} \operatorname{Tr}\left(\varphi_{i}\right): \operatorname{ker}(\Delta) \longrightarrow \mathbb{C} \quad, \quad \underline{\Phi}=\Phi_{0} \mathbb{1}_{N} \longmapsto \frac{1}{N} \operatorname{Tr}\left(\varphi_{i} \underline{\Phi}\right)=\frac{1}{N} \operatorname{Tr}\left(\varphi_{i}\right) \Phi_{0}$
is a linear function on the space of vacua $\operatorname{ker}(\Delta)$
Purely classical contributions are completely analogous to expanding field operator $\widehat{\phi}+\underline{\Phi}$ around generic classical solution $\underline{\Phi}$ in traditional QFT

Outlook

- Fuzzy sphere has well-known su(2)-equivariant 3D differential calculus on $A=(\alpha) \otimes(\alpha)^{*}$ given by Chevalley-Eilenberg dg-algebra of su(2)

Enables BV formulation of fuzzy field theories with gauge symmetries (Chern-Simons, Yang-Mills, etc.)

- Braided generalization of BV formalism (based on braided L_{∞}-algebras) enables quantization of fuzzy field theories with braided symmetries from a purely algebraic perspective
E.g. braided scalar field theory on the fuzzy torus - extension to gauge theories (differential calculus)? (Nguyen, Schenkel \& Sz '21)
- Extensions to continuum (braided) models are possible (but not rigorous) (Giotopoulos \& Sz '21; Dimitrijević Ćírić, Konjik, Radovanović \& Sz '23; ...)

