A realistic and testable Supersymmetric

Model from the Dimensional Reduction of an $N=1,10 D, E_{8}$ Theory over a Modified Flag Manifold

George Zoupanos

NTUAthens

Quantum \& fuzzy:
Workshop in honour of the 65th birthday of Professor Maja Burić

4 April 2024, Belgrade, Serbia

- Short reminder of the Kaluza - Klein programme
- Higher-Dimensional Unified Gauge Theories and Coset Space Dimensional Reduction (CSDR)
- A realistic Effective Theory
- Embedding in the heterotic $10 D$ Superstring
- Fuzzy extra dimensions \rightarrow renormalizable realistic 4-d GUTs
- Reduction of couplings in $\mathcal{N}=1$ gauge theories \rightarrow predictive GUTs, Finite Unified Theories, reduced MSSM
- Noncommutative (fuzzy) Gravity
- Ghost-free conformal Gravity, R^{2} Gravity
- Unification of Gravity theories with internal interactions

- Kaluza-Klein observation: Dimensional Reduction of a pure gravity theory on $M^{4} \times S^{1}$ leads to a $U(1)$ gauge theory coupled to gravity in four dimensions. The extra dimensional gravity provided a geometrical unified picture of gravitation and electromagnetism.
- Generalization to $M^{D}=M^{4} \times B$, with B a compact Riemannian space with a non-abelian isometry group S leads after dim. reduction to gravity coupled to Y-M in 4 dims.

Kerner '68
Cho - Freund ' 75

Problems

- No classical ground state corresponding to the assumed M^{D}.
- Adding fermions in the original action, it is impossible to obtain chiral fermions in four dims.

Witten '85

- However by adding suitable matter fields in the original action, in particular $\mathrm{Y}-\mathrm{M}$ one can have a classical stable ground state of the required form and massless chiral fermions in four dims.

Horvath - Palla - Cremmer - Scherk' 77

Coset Space Dimensional Reduction (CSDR)

Original motivation

Use higher dimensions

- to unify the gauge and Higgs sectors
- to unify the fermion interactions with gauge and Higgs fields
* Supersymmetry provides further unification (fermions in adj. reps)

Forgacs - Manton'79, Manton'81, Chapline - Slansky'82
Kubyshin - Mourao - Rudolph - Volobujev'89
Kapetanakis - $Z^{\prime} 92$, Manousselis - $Z^{\prime} 01-^{\prime} 08$

Further successes

(a) chiral fermions in 4 dims from vector-like reps in the higher dim theory
(b) the metric can be deformed (in certain non-symmetric coset spaces) and more than one scales can be introduced
(c) Wilson flux breaking can be used
(d) Softly broken susy chiral theories in 4 dims can result from a higher dimensional susy theory

Theory in D dims \rightarrow Theory in 4 dims

1. Compactification

$$
M^{D} \rightarrow M^{4} \times B
$$

B - a compact space $\operatorname{dim} B=D-4=d$
2. Dimensional Reduction

Demand that \mathcal{L} is independent of the extra y^{a} coordinates

- One way: Discard the field dependence on y^{a} coordinates
- An elegant way: Allow field dependence on y^{a} and employ a symmetry of the Lagrangian to compensate

Obvious choice: Gauge Symmetry

Allow a non-trivial dependence on y^{a}, but impose the condition that a symmetry transformation by an element of the isometry group S of B is compensated by a gauge transformation.
$\Rightarrow \mathcal{L}$ independent of y^{a} just because is gauge invariant.
Integrate out extra coordinates

CSDR: $B=S / R$

$$
\begin{array}{r}
S: \quad \Theta_{A}=\left\{Q_{i}, Q_{a}\right\} \\
|\mid \\
R \quad S / R
\end{array}
$$

$$
\begin{aligned}
& {\left[Q_{i}, Q_{j}\right]=f_{i j}^{k} Q_{k},\left[Q_{i}, Q_{a}\right]=f_{i a}^{b} Q_{b},} \\
& {\left[Q_{a}, Q_{b}\right]=f_{a b}^{i} Q_{i}+f_{a b}^{c} Q_{c},}
\end{aligned}
$$

where $f_{a b}^{c}$ vanishes in symmetric S / R

Consider a Yang-Mills-Dirac theory in D dims based on group G defined on $M^{D} \rightarrow M^{4} \times S / R, D=4+d$

$$
\begin{gathered}
g^{M N}=\left(\begin{array}{cc}
\eta^{\mu \nu} & 0 \\
0 & -g^{a b}
\end{array}\right) \quad \eta^{\mu \nu}=\operatorname{diag}(1,-1,-1,-1) \\
d=\operatorname{dimS}-\operatorname{dimR} \quad g^{a b}-\operatorname{coset} \text { space metric } \\
A=\int \mathrm{d}^{4} x \mathrm{~d}^{d} y \sqrt{-g}\left[-\frac{1}{4} \operatorname{Tr}\left(F_{M N} F_{K \Lambda}\right) g^{M K} g^{N \Lambda}+\frac{i}{2} \bar{\psi} \Gamma^{M} D_{M} \psi\right] \\
D_{M}=\partial_{M}-\theta_{M}-A_{M}, \theta_{M}=\frac{1}{2} \theta_{M N \Lambda} \Sigma^{N \Lambda}
\end{gathered}
$$

where θ_{M} is the spin connection of M^{D} and ψ is in rep F of G We require that any transformation by an element of S acting on S / R is compensated by gauge transformations.

$$
\begin{aligned}
A_{\mu}(x, y)= & g(s) A_{\mu}\left(x, s^{-1} y\right) g^{-1}(s) \\
A_{a}(x, y)= & g(s) J_{a}{ }^{b} A_{b}\left(x, s^{-1} y\right) g^{-1}(s) \\
& +g(s) \partial_{a} g^{-1}(s) \\
\psi(x, y)= & f(s) \Omega \psi\left(x, s^{-1} y\right) f^{-1}(s)
\end{aligned}
$$

g, f - gauge transformations in the adj, F of G corresponding to the s transformation of S acting on S / R
$J_{a}{ }^{b}$ - Jacobian for s
Ω - Jacobian + local Lorentz rotation in tangent space
Above conditions imply constraints that D-dims fields should obey.

Solution of constraints:

- 4-dim fields
- Potential
- Remaining gauge invariance

Taking into account all the constraints and integrating out the extra coordinates, we obtain in 4 dims:

$$
\begin{aligned}
A= & C \int \mathrm{~d}^{4} x\left(-\frac{1}{4} \operatorname{Tr} F_{\mu \nu} F^{\mu \nu}+\frac{1}{2} \sum_{a} \operatorname{Tr}\left(D_{\mu} \phi_{a} D^{\mu} \phi^{a}\right)\right. \\
& \left.+V(\phi)+\frac{i}{2} \bar{\psi} \Gamma^{\mu} D_{\mu} \psi-\frac{i}{2} \bar{\psi} \Gamma^{a} D_{a} \psi\right)
\end{aligned}
$$

kinetic terms mass terms

$$
D_{\mu}=\partial_{\mu}-A_{\mu}, D_{a}=\partial_{a}-\theta_{a}-\phi_{a}, \theta_{a}=\frac{1}{2} \theta_{a b c} \Sigma^{b c}
$$

$C-$ volume of cs , $\quad \theta_{a}-$ spin connection of cs

$$
V(\phi)=-\frac{1}{4} g^{a c} g^{b d} \operatorname{Tr}\left\{\left(f_{a b}^{C} \phi_{C}-\left[\phi_{a}, \phi_{b}\right]\right)\left(f_{c d}^{D} \phi_{D}-\left[\phi_{c}, \phi_{d}\right]\right)\right\}
$$

$A=1, \ldots, \operatorname{dim} S, f-$ structure constants of S. Still $V(\phi)$ only formal since ϕ_{a} must satisfy $f_{a i}^{D} \phi_{D}-\left[\phi_{a}, \phi_{i}\right]=0$.

1) The 4-dim gauge group

$$
\begin{aligned}
& H=C_{G}\left(R_{G}\right) \\
\text { i.e. } & G \supset R_{G} \times H
\end{aligned}
$$

where G is the higher-dim group and H is the 4 dim group.
2) Scalar fields

$$
\begin{aligned}
S & \supset R \\
\operatorname{adj} S & =\operatorname{adj} R+v \\
G & \supset R_{G} \times H \\
\operatorname{adj} G & \supset(\operatorname{adj} R, 1)+(1, \operatorname{adj} H)+\Sigma\left(r_{i}, h_{i}\right)
\end{aligned}
$$

If $v=\Sigma s_{i}$
when $s_{i}=r_{i} \Rightarrow \quad h_{i}$ survives in 4 dims.
3) Fermions

$$
\begin{aligned}
& G \supset R_{G} \times H \\
& F=\sum\left(t_{i}, h_{i}\right)
\end{aligned}
$$

spinor of $S O(d)$ under R

$$
\sigma_{d}=\sum \sigma_{i}
$$

for every $t_{i}=\sigma_{i} \Rightarrow \quad h_{i}$ survives in 4 dims.

Possible to obtain a chiral theory in 4 dims starting from Weyl fermions in a complex rep.
However, even starting with Weyl (+ Majorana) fermions in vector-like reps of G in $D=4 n+2$ dims we are also led to a chiral theory.

If D is even:

$$
\begin{aligned}
& \Gamma^{D+1} \Psi_{ \pm}= \pm \Psi_{ \pm} \\
& \Psi=\Psi_{+} \oplus \Psi_{-}=\sigma_{D}+\sigma_{D}^{\prime}
\end{aligned}
$$

where $\sigma_{D}, \sigma_{D}^{\prime}$ are non-self conjugate spinors of $S O(1, D-1)$.
The $(S U(2) \times S U(2)) \times S O(d)$ branching rule is:

$$
\begin{aligned}
\sigma_{D} & =\left(2,1 ; \sigma_{d}\right)+\left(1,2 ; \sigma_{d}^{\prime}\right) \\
\sigma_{D}^{\prime} & =\left(2,1 ; \sigma_{d}^{\prime}\right)+\left(1,2 ; \sigma_{d}\right)
\end{aligned}
$$

Starting with Dirac fermions equal number of left and right-handed
$\rightsquigarrow \quad$ reps of the 4 -dim group H
Weyl condition selects either σ_{D} or σ_{D}^{\prime}

Weyl condition cannot be applied in odd dims. In that case:

$$
\sigma_{D}=\left(2,1 ; \sigma_{d}\right)+\left(1,2 ; \sigma_{d}\right)
$$

where σ_{d} is the unique spinor of $S O(d)$ equal number of left and right-handed
$\rightsquigarrow \quad$ reps in 4 dims
Most interesting case is when $D=4 n+2$ and we start with a vectorlike rep. In that case σ_{d} is non-self-conjugate and $\sigma_{d}^{\prime}=\bar{\sigma}_{d}$.

Then the decomposition of $\sigma_{d}, \bar{\sigma}_{d}$ of $S O(d)$ under R is:

$$
\sigma_{d}=\sum \sigma_{k}, \quad \bar{\sigma}_{d}=\sum \bar{\sigma}_{k}
$$

Then:

$$
\begin{aligned}
& G \supset R_{G} \times H \\
& \text { vectorlike } \leftarrow F=\sum_{i}\left(r_{i}, h_{i}\right) \rightarrow \text { either self-conjugate or } \\
& \text { have a partner }\left(\bar{r}_{i}, \bar{h}_{i}\right)
\end{aligned}
$$

Then according to the rule from σ_{d} we will obtain in 4 dims left-handed fermions $f_{L}=\sum h_{k}^{L}$.

Since σ_{d} is non-self-conjugate, f_{L} is non-self-conjugate.
Similarly, from $\bar{\sigma}_{d}$, we obtain the right-handed rep $\sum \bar{h}_{k}^{R}=\sum h_{k}^{L}$.

Moreover since F vectorlike, $\bar{h}_{k}^{R} \sim h_{k}^{L}$, i.e. H is chiral theory with double spectrum.

We can still impose Majorana condition (Weyl and Majorana are compatible in $4 n+2$ dims) to eliminate the doubling of the fermion spectrum.

Majorana condition (reverses the sign of all int. qu. nos) forces f_{R} to be the charge conjugate of f_{L}.

If F complex \rightarrow chiral theory just \bar{h}_{k}^{R} is different from h_{k}^{L}.

An easy case in calculating the potential, its minimization and SSB:

If $G \supset S \Rightarrow H$ breaks to $K=C_{G}(S)$:

$$
\begin{aligned}
& G \supset S \times K \leftarrow \text { gauge group after SSB } \\
& \quad \cup \cap \\
& G \supset R \times H \leftarrow \text { gauge group in } 4 \mathrm{dims}
\end{aligned}
$$

But
fermion masses

$$
\begin{aligned}
M^{2} \Psi & =D_{a} D^{a} \Psi-\frac{1}{4} R \Psi-\frac{1}{2} \underbrace{\Sigma^{a b} F_{a b}}_{=0, \text { if } S \subset G} \Psi>0 \\
& =\left(C_{s}+C_{R}\right) \Psi
\end{aligned}
$$

comparable to the compactification scale.

Supersymmetry breaking by dim reduction over symmetric CS (e.g SO(7)/SO(6))

Consider $G=E_{8}$ in 10 dims with Weyl-Majorana fermions in the adjoint rep of E_{8}, i.e. a susy E_{8}.
Embedding of $R=S O(6)$ in E_{8} is suggested by the decomposition:

$$
\begin{aligned}
E_{8} & \supset S O(6) \times S O(10) \\
248 & =(15,1)+(1,45)+(6,10)+(4,16)+(\overline{4}, \overline{16})
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{adjS} & =\operatorname{adj} R+v \\
21 & =15+6 \leftarrow \text { vector }
\end{aligned}
$$

Spinor of $S O(6): 4$
In 4 dims we obtain a gauge theory based on:

$$
H=C_{E_{8}}(S O(6))=S O(10),
$$

with scalars in 10 and fermions in 16.

- Theorem: When S / R symmetric, the potential necessarily leads to spontaneous breakdown of H.
- Moreover in this case we have:

$$
\begin{gathered}
E_{8} \supset S O(7) \times S O(9) \\
\cup \\
E_{8} \supset S O(6) \times S O(10)
\end{gathered}
$$

\Rightarrow Final gauge group after breaking:

$$
K=C_{E_{8}}(S O(7))=S O(9)
$$

CSDR over symmetric coset spaces breaks completely original supersymmetry.

Soft Supersymmetry Breaking by CSDR over non-symmetric CS.

We have examined the dim reduction of a supersymmetric E_{8} over the 3 existing 6-dim CS:
$G_{2} / \operatorname{SU}(3), \quad S p(4) /(S U(2) \times U(1))_{\text {non-max }}, \quad S U(3) / U(1) \times U(1)$
Softly Broken Supersymmetric
$\Rightarrow \quad$ Theories in 4 dims without any
further assumption

Non-symmetric CS admit torsion and the two latter more than one radii.

Consider supersymmetric E_{8} in 10 dims and $S / R=G_{2} / S U(3)$.
We use the decomposition:

$$
\begin{aligned}
E_{8} & \supset \mathrm{SU}(3) \times E_{6} \\
248 & =(8,1)+(1,78)+(3,27)+(\overline{3}, \overline{27})
\end{aligned}
$$

and choose $R=S U(3)$

$$
\begin{aligned}
\operatorname{adj} S & =\operatorname{adj} R+v \\
14 & =8+\underbrace{3+\overline{3}}
\end{aligned}
$$

vector
Spinor: $1+3$ under $R=S U(3)$
\Rightarrow In 4 dim theory: $H=C_{E_{8}}(S U(3))=E_{6}$ with:
scalars in $27=\beta$ and fermions in 27, 78
i.e.: spectrum of a supersymmetric E_{6} theory in 4 dims.

The Higgs potential of the genuine Higgs β :

$$
\begin{aligned}
V(\beta)= & 8-\frac{40}{3} \beta^{2}-\left[4 d_{i j k} \beta^{i} \beta^{i} \beta^{k}+h . c .\right] \\
& +\beta^{i} \beta^{j} d_{i j k} d^{k \ell m} \beta_{\ell} \beta_{m} \\
& +\frac{11}{4} \sum_{\alpha} \beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j} \beta^{k}\left(G^{\alpha}\right)_{k}^{\ell} \beta_{\ell}
\end{aligned}
$$

which obtains F-terms contributions from the superpotential:

$$
W(B)=\frac{1}{3} d_{i j k} B^{i} B^{j} B^{k}
$$

D-term contributions:

$$
\frac{1}{2} D^{\alpha} D^{\alpha}, \quad D^{\alpha}=\sqrt{\frac{11}{2}} \beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j}
$$

The rest terms belong to the SSB part of the Lagrangian:

$$
\begin{aligned}
\mathcal{L}_{\text {scalar }}^{S S B} & =-\frac{1}{R^{2}} \frac{40}{3} \beta^{2}-\left[4 d_{i j k} \beta^{i} \beta^{j} \beta^{k}+\text { h.c. }\right] \frac{g}{R} \\
M_{\text {gaugino }} & =(1+3 \tau) \frac{6}{\sqrt{3}} \frac{1}{R}
\end{aligned}
$$

Reduction of $10-\mathrm{dim}, \mathcal{N}=1, E_{8}$ over $S / R=S U(3) / U(1) \times U(1) \times Z_{3}$

Irges - Z'11
Manolakos - Patellis - Z '20
Patellis - Porod - Z '23
We use the decomposition:

$$
E_{8} \supset E_{6} \times S U(3) \supset E_{6} \times U(1)_{A} \times U(1)_{B}
$$

and choose $R=U(1)_{A} \times U(1)_{B}$,

$$
\begin{aligned}
\rightsquigarrow H= & C_{E_{8}}\left(U(1)_{A} \times U(1)_{B}\right)=E_{6} \times U(1)_{A} \times U(1)_{B} \\
E_{8} \supset & E_{6} \times U(1)_{A} \times U(1)_{B} \\
248= & 1_{(0,0)}+1_{(0,0)}+1_{(3,1 / 2)}+1_{(-3,1 / 2)} \\
& 1_{(0,-1)}+1_{(0,1)}+1_{(-3,-1 / 2)}+1_{(3,-1 / 2)} \\
& 78_{(0,0)}+27_{(3,1 / 2)}+27_{(-3,1 / 2)}+27_{(0,-1)} \\
& \overline{27}_{(-3,-1 / 2)}+\overline{27}_{(3,-1 / 2)}+\overline{27}_{(0,1)}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{adj} S=\operatorname{adj} R+v \quad \leftarrow \text { vector } \\
& \Downarrow \\
& 8=(0,0)+(0,0)+(3,1 / 2)+(-3,1 / 2) \\
&+(0,-1)+(0,1)+(-3,-1 / 2)+(3,-1 / 2)
\end{aligned}
$$

```
\(S O(6) \supset S U(3) \supset U(1)_{A} \times U(1)_{B}\)
\[
4=1+3=(0,0)+(3,1 / 2)+(-3,1 / 2)+(0,-1)
\]
spinor
```


4-dim theory

$\mathcal{N}=1, E_{6} \times U(1)_{A} \times U(1)_{B}$
with chiral supermultiplets:
$A^{i}: 2_{(3,1 / 2)}, B^{i}: 2_{(-3,1 / 2)}, C^{i}: 2_{(0,-1)}, A: 1_{(3,1 / 2)}, B: 1_{(-3,1 / 2)}, C: 1_{(0,-1)}$
Scalar potential:

$$
\begin{aligned}
& \frac{2}{g^{2}} V=\frac{2}{5}\left(\frac{1}{R_{1}^{4}}+\frac{1}{R_{2}^{4}}+\frac{1}{R_{3}^{4}}\right)+\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \alpha^{i} \alpha_{i}+\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \bar{\alpha} \alpha \\
& +\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \beta^{i} \beta_{i}+\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \bar{\beta} \beta+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \gamma^{i} \gamma_{i}+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \bar{\gamma} \gamma \\
& +\sqrt{2} 80\left[\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) d_{i j k} \alpha^{i} \beta^{j} \gamma^{k}+\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) \alpha \beta \gamma+\text { h.c }\right] \\
& +\frac{1}{6}\left(\alpha^{i}\left(G^{\alpha}\right)_{i}^{j} \alpha_{j}+\beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j}+\gamma^{i}\left(G^{\alpha}\right)_{i}^{j} \gamma_{j}\right)^{2} \\
& +\frac{10}{6}\left(\alpha^{i}\left(3 \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}(3) \alpha+\beta^{i}\left(-3 \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}(-3) \beta\right)^{2} \\
& +\frac{40}{6}\left(\alpha^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}\left(\frac{1}{2}\right) \alpha+\beta^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}\left(\frac{1}{2}\right) \beta+\gamma^{i}\left(-1 \delta_{i}^{j}\right) \gamma^{j}+\bar{\gamma}(-1) \gamma\right)^{2} \\
& +40 \alpha^{i} \beta^{j} d_{i j k} d^{k l m} \alpha_{l} \beta_{m}+40 \beta^{i} \gamma^{j} d_{i j k} d^{k l m} \beta_{l} \gamma_{m}+40 \alpha^{i} \gamma^{j} d_{i j k} d^{k l m} \alpha_{l} \gamma_{m} \\
& +40(\bar{\alpha} \bar{\beta})(\alpha \beta)+40(\bar{\beta} \bar{\gamma})(\beta \gamma)+40(\bar{\gamma} \bar{\alpha})(\gamma \alpha)
\end{aligned}
$$

where $\alpha^{i}, \beta^{i}, \gamma^{i}, \alpha, \beta, \gamma$ are the scalar components of $A^{i}, B^{i}, C^{i}, A, B, C$.

Superpotential: $W\left(A^{i}, B^{j}, C^{k}, A, B, C\right)=\sqrt{40} d_{i j k} A^{i} B^{j} C^{k}+\sqrt{40} A B C$
D-terms: $\frac{1}{2} D^{\alpha} D^{\alpha}+\frac{1}{2} D_{1} D_{1}+\frac{1}{2} D_{2} D_{2}$ where:

$$
\begin{aligned}
D^{\alpha} & =\frac{1}{\sqrt{3}}\left(\alpha^{i}\left(G^{\alpha}\right)_{i}^{j} \alpha_{j}+\beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j}+\gamma^{i}\left(G^{\alpha}\right)_{i}^{j} \gamma_{j}\right) \\
D_{1} & =\frac{\sqrt{10}}{3}\left(\alpha^{i}\left(3 \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}(3) \alpha+\beta^{i}\left(-3 \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}(-3) \beta\right) \\
D_{2} & =\frac{\sqrt{40}}{3}\left(\alpha^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \alpha_{j}+\bar{\alpha}\left(\frac{1}{2}\right) \alpha+\beta^{i}\left(\frac{1}{2} \delta_{i}^{j}\right) \beta_{j}+\bar{\beta}\left(\frac{1}{2}\right) \beta+\gamma^{i}\left(-1 \delta_{i}^{j}\right) \gamma_{j}+\bar{\gamma}(-1) \gamma\right)
\end{aligned}
$$

Soft scalar supersymmetry breaking terms, $\mathcal{L}_{\text {scalar }}^{\text {SSB }}$:

$$
\begin{aligned}
& \left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \alpha^{i} \alpha_{i}+\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \bar{\alpha} \alpha+\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \beta^{i} \beta_{i}+ \\
& \left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \bar{\beta} \beta+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{2}^{3}}\right) \gamma^{i} \gamma_{i}+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \bar{\gamma} \gamma+ \\
& \sqrt{2} 80\left[\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) d_{i j k} \alpha^{i} \beta^{j} \gamma^{k}+\left(\frac{R_{1}}{R_{2} R_{3}}+\frac{R_{2}}{R_{1} R_{3}}+\frac{R_{3}}{R_{2} R_{1}}\right) \alpha \beta \gamma+\text { h.c. }\right],
\end{aligned}
$$

Gaugino mass, $M=(1+3 \tau) \frac{R_{1}^{2}+R_{2}^{2}+R_{3}^{2}}{8 \sqrt{R_{1}^{2} R_{2}^{2} R_{3}^{2}}}, \tau$ torsion coeff.
Potential, $V=V_{F}+V_{D}+V_{\text {soft }}$

The Wilson flux breaking

$M^{4} \times B_{o} \rightarrow M^{4} \times B, B=B_{o} / F^{S / R}$
$F^{S / R}$ - a freely acting discrete symmetry of B_{o}.

1. B becomes multiply connected
2. For every element $g \in F^{S / R}$,

$$
\rightsquigarrow \mathcal{V}_{g}=\operatorname{Pexp}\left(-i \int_{\gamma_{g}} T^{a} A_{M}^{a}(x) d x^{M}\right) \in H
$$

3. If the contour is non-contractible $\rightsquigarrow \mathcal{V}_{g} \neq 1$ and then $f(g(x))=\mathcal{V}_{g} f(x)$, which leads to a breaking of H to $K^{\prime}=C_{H}\left(T^{H}\right)$, where T^{H} is the image of the homomorphism of $F^{S / R}$ into H.
4. Matter fields invariant under $F^{S / R} \oplus T^{H}$.

In the case of $S U(3) / U(1) \times U(1)$ a freely acting discrete group is:

$$
F^{S / R}=\mathbb{Z}_{3} \subset W, W=\frac{W_{S}}{W_{R}},
$$

$W_{S, R}$: Weyl group of S, R.

$$
\rightsquigarrow \gamma_{3}=\operatorname{diag}\left(\mathbb{1}, \omega \mathbb{l}, \omega^{2} \mathbb{1}\right), \quad \omega=e^{2 i \pi / 3} \in \mathbb{Z}_{3}
$$

The fields that are invariant under $F^{\mathrm{S} / R} \oplus T^{H}$ survive, i.e.:

$$
\begin{aligned}
& A_{\mu}=\gamma_{3} A_{\mu} \gamma_{3}^{-1} \\
& A^{i}=\gamma_{3} A^{i}, \quad B^{i}=\omega \gamma_{3} B^{i}, \quad C^{i}=\omega^{2} \gamma_{3} C^{i} \\
& A=A, \quad B=\omega B, \quad C=\omega^{2} C \\
& \rightsquigarrow \mathcal{N}=1, \quad \operatorname{SU}(3)_{c} \times \operatorname{SU}(3)_{L} \times \operatorname{SU}(3)_{R}
\end{aligned}
$$

Recall that

$$
27=(1,3, \overline{3})+(\overline{3}, 1,3)+(3, \overline{3}, 1)
$$

with matter superfields in:
$(1,3, \overline{3})_{(3,1 / 2)}$,
$\downarrow$$\quad \begin{array}{cc}(\overline{3}, 1,3)_{(-3,1 / 2)}, & (3, \overline{3}, 1)_{(0,-1)} \\ \downarrow & \\ \downarrow\end{array}$
and the surviving singlet

$$
\theta \rightarrow(1,1,1)_{(3,1 / 2)} .
$$

Introducing appropriate non-trivial monopole charges in $U(1) \times U(1)$, 3 indentical flavours can appear for each of the chiral superfields.

Further Gauge Breaking of $S U(3)^{3}$

Babu - He - Pakvasa '86; Ma - Mondragon - Z '04;
Leontaris - Rizos '06; Sayre - Wiesenfeldt - Willenbrock '06
At least two generations of L acquire vevs that break the GUT:

$$
\left\langle L_{s}^{(3)}\right\rangle=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
V & 0 & 0
\end{array}\right), \quad\left\langle L_{s}^{(2)}\right\rangle=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & V
\end{array}\right)
$$

each one alone is not enough to produce the (MS)SM gauge group:

$$
\begin{aligned}
& S U(3)_{c} \times S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R} \times U(1) \\
& S U(3)_{c} \times S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{c} \times S U(2)_{L} \times S U(2)_{R}^{\prime} \times U(1)^{\prime}
\end{aligned}
$$

Their combination gives the desired breaking:

$$
S U(3)_{c} \times S U(3)_{L} \times S U(3)_{R} \rightarrow S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y}
$$

Electroweak breaking then proceeds by:

$$
\left\langle L_{s}^{(3)}\right\rangle=\left(\begin{array}{ccc}
v_{d} & 0 & 0 \\
0 & v_{u} & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Effective Theory

Polchinski '84

If an effective $4 D$ theory is renormalizable by power counting, it is consistent to consider it as a renormalizable theory.
\rightarrow We choose to respect the symmetries and model structure that are derived by the higher-dimensional theory and its dimensional reduction.
\rightarrow We treat all the parameters of the effective theory as free parameters, to the extend allowed by symmetries.
i.e.

- one coupling for all kinetic terms $+D$-terms
- one coupling for all superpotential terms
- independent couplings for soft SUSY + R-symmetry breaking terms (e.g. the $b L^{3}$ term included in the scalar potential which breaks the R-symmetry and will be necessary for the Split NMSSM phenomenology)

Scales of Parameters

Choosing $M_{C o m p}=M_{G U T}$:

- Soft trilinear terms $\sim \frac{1}{R_{i}} \sim \mathcal{O}\left(M_{G U T}\right)$
- Soft scalar masses $\sim \frac{1}{R_{i}^{2}} \sim \mathcal{O}\left(M_{G U T}^{2}\right)$
- Specific choice of radii and soft parameters $\rightarrow m_{\theta_{\mathrm{S}}^{(3)}}^{2} \sim \mathcal{O}\left(M_{E W}^{2}\right)$

We use vevs in all $L_{s}^{(i)}$ and $\theta^{(1,2)}$ to break the gauge group:
$S U(3)^{3} \times U(1)^{2} \xrightarrow{V} S U(3)_{c} \times S U(2)_{L} \times U(1)_{Y} \xrightarrow{v_{u, d}} S U(3)_{c} \times U(1)_{e m}$

- μ terms for each generation of Higgs doublets emerge radiatively since R-symmetry is now broken: $\quad H_{u}^{(i)} H_{d}^{(i)} \bar{\theta}^{(i)}$
- Lepton Yukawa terms that were forbidden by the R-symmetry emerge similarly: $L \bar{e} H_{d}$
- $\mathrm{A} \mathcal{Z}_{2}$ discrete symmetry makes sure we have no dangerous terms
- Taking into account the rest of the allowed terms
\rightarrow the S, ν_{R} and $\theta^{(1,2)}$ fermions become supermassive
$\rightarrow \theta^{(3)}$ fermion acquires an $m \sim \mathcal{O}(E W)$ due to cancellation among vevs

Low Energy Effective Model

D, S, ν_{R} masses	$\mathcal{O}(G U T)$
sfermion masses	$\mathcal{O}(G U T)$
soft trilinear couplings / soft B term	$\mathcal{O}(G U T)$
soft Higgs mass parameters	$\mathcal{O}(G U T)$
fermion \& scalar $\theta^{(1,2)}$ masses	$\mathcal{O}(G U T)$
fermion \& scalar $\theta^{(3)}$ masses	$\mathcal{O}(E W)$
unified gaugino mass	$\mathcal{O}(E W)$

- Trilinear term $H_{u}^{(3)} H_{d}^{(3)} \theta^{(3)} \xrightarrow{\left\langle\theta^{(3)}>\sim \mathcal{O}(E W)\right.}$ light μ-term
- $\theta^{(3)}$ singlet superfield $\&$ gauginos \rightarrow light
- soft Higgs mass parameters, effective soft B-parameter and sfermions \rightarrow superheavy \rightarrow light Higgs mass

Phenomenological Analysis

2-loop Analysis (using SPheno):
\checkmark Particle content permits gauge unification
\checkmark Top, bottom and tau masses in agreement with the latest LHC measurements
\checkmark Light Higgs mass in agreement with the latest LHC measurements
\checkmark Light SUSY spectrum consistent with non-observation
\checkmark Stable LSP neutralino (CDM candidate)

CSDR and the Einstein-Yang-Mills system

EYM theory with cosmological constant in $4+d$ dimensions:

$$
L=-\frac{1}{16 \pi G} \sqrt{-g} R^{(D)}-\frac{1}{4 g^{2}} \sqrt{-g} F_{M N}^{a} F^{a M N}-\sqrt{-g} \Lambda
$$

The corresponding equations of motion are:

$$
D_{M} F^{M N}=0, \quad R_{M N}-\frac{1}{2} R g_{M N}=-8 \pi G T_{M N}
$$

Spontaneous compactification: Solutions of the coupled EYM system corresponding to $M^{4} \times B-B$ a coset space and α, β coset indices + demanding M^{4} to be flat Minkowski:

$$
\Lambda=\frac{1}{4} \operatorname{Tr}\left(F_{\alpha \beta} F^{\alpha \beta}\right)
$$

Λ is absent in 4 dims: eliminates the vacuum energy of the gauge fields
Λ equal to the minimum of the potential of the theory

The potential of the reduced low-energy limit of $10-\mathrm{d}$ heterotic string over $S U(3) / U(1) \times U(1)$

Low-energy effective action of $E_{8} \times E_{8}$ heterotic string (bos part):
$\mathcal{S}_{\text {het }}=\frac{1}{2 \kappa^{2}} \int \mathrm{~d}^{10} x \sqrt{-|g|}\left(R-\frac{1}{2} \partial_{M} \tilde{\Phi} \partial^{M} \tilde{\Phi}-\frac{e^{-\tilde{\Phi}}}{12} \tilde{H}_{M N \Lambda} \tilde{H}^{M N \Lambda}+\frac{\alpha^{\prime} e^{-\frac{1}{2} \tilde{\Phi}}}{4} \operatorname{Tr} F_{M N} F^{M N}\right)$

- $\kappa^{2}=8 \pi G^{(10)}$ the 10-d gravitational constant
- α^{\prime} the Regge slope parameter
- R the Ricci scalar of the $10-\mathrm{d}$ (target) space
- $\tilde{\Phi}$ the dilaton scalar field
- \tilde{H} the field strength tensor of the 2 -form $B_{M N}$ field
- F the field strength tensor of the $E_{8} \times E_{8}$ gauge field Also, $g_{s}^{2}=e^{2 \tilde{\Phi}_{0}}$ is the string coupling constant ($\tilde{\Phi}_{0}$ is the constant mode of the dilaton)

Application of the CSDR over $S U(3) / U(1) \times U(1)$ leads to a $4-d$ scalar potential Chatzistavrakidis - Z '09 The contributions of the three sectors after the CSDR:

$$
\begin{aligned}
V_{g r} & =-\frac{1}{4 \kappa^{2}} e^{-\tilde{\phi}}\left(\frac{6}{R_{1}^{2}}+\frac{6}{R_{2}^{2}}+\frac{6}{R_{3}^{2}}-\frac{R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}\right) \\
V_{H} & =\frac{1}{2 \kappa^{2}} e^{-\tilde{\phi}}\left[\frac{\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)^{2}}{\left(R_{1} R_{2} R_{3}\right)^{2}}+\sqrt{2} i \alpha^{\prime} \frac{1}{R_{1} R_{2} R_{3}}\left(b_{1}^{2}+b_{2}^{2}+b_{3}^{2}\right)\left(d_{j k k} \alpha^{i} \beta^{j} \gamma^{k}-h . c .\right)\right] \\
V_{F} & =\frac{\alpha^{\prime}}{8 \kappa^{2}} e^{-\frac{\tilde{d}}{2}}\left[c+\left(\frac{4 R_{1}^{2}}{R_{2}^{2} R_{3}^{2}}-\frac{8}{R_{1}^{2}}\right) \alpha^{i} \alpha_{i}+\left(\frac{4 R_{2}^{2}}{R_{1}^{2} R_{3}^{2}}-\frac{8}{R_{2}^{2}}\right) \beta^{i} \beta_{i}+\left(\frac{4 R_{3}^{2}}{R_{1}^{2} R_{2}^{2}}-\frac{8}{R_{3}^{2}}\right) \gamma^{i} \gamma_{i}\right. \\
+ & \sqrt{2} 80 \frac{R_{1}^{2}+R_{2}^{2}+R_{3}^{2}}{R_{1} R_{2} R_{3}}\left(d_{j k k} \alpha^{i} \beta^{j} \gamma^{k}+\text { h.c. }\right)+\frac{1}{6}\left(\alpha^{i}\left(G^{\alpha}\right)_{i}^{j} \alpha_{j}+\beta^{i}\left(G^{\alpha}\right)_{i}^{j} \beta_{j}+\gamma^{i}\left(G^{\alpha}\right)_{i}^{i} \gamma_{j}\right)^{2} \\
& +5\left(\alpha^{i} \alpha_{i}-\beta^{i} \beta_{i}\right)^{2}+\frac{10}{3}\left(\alpha^{i} \alpha_{i}+\beta^{i} \beta_{i}-2 \gamma^{i} \gamma_{i}\right)^{2} \\
& \left.+40 \alpha^{i} \beta^{j} d_{j k} k^{k l m} \alpha_{l} \beta_{m}+40 \beta^{i} \gamma^{j} d_{g k k} d^{k l m} \beta_{l} \gamma_{m}+40 \alpha^{i} \gamma^{j} d_{j k k} d^{k l m} \alpha_{l} \gamma_{m}\right]
\end{aligned}
$$

Possible compensation to the negative gravity contribution by the presence of gauge and 3-form sectors.

Gibbons '84; De Wit - Smit - Dass '87;
Maldacena - Nuñez '01, Manousselis - Prezas - Z '06

Results

Manolakos - Patellis - Z ’22

- Indicative results for the case

$$
\begin{array}{rr}
E_{8} \supset G_{2} & \times F_{4} \\
\cup & \cap \\
E_{8} \supset S U_{3} \times & E_{6}
\end{array}
$$

where β is the vev-acquiring scalar and b is a parameter of the 3 -form potential.

- Working on the case

$$
\begin{aligned}
& E_{8} \supset S U_{3} \times E_{6} \\
& \cup \quad \cap \\
& E_{8} \supset U_{1}^{2} \times E_{6} \times U_{1}^{2}
\end{aligned}
$$

we find similar behaviour

$$
\text { for } \Sigma b_{i}>10^{-33} \mathrm{GeV}^{-2},
$$

i.e. before the Wilson flux and other breakings.
$\sqrt{ }$ There is a slice of parameter space for Minkowski vacua.

THANK YOU!

CORFU2024

